Древнейшая наука астрономия. Астрономия. Развитие астрономических исследований
История современного города Афины.
Древние Афины
История современных Афин

Астрономия - древнейшая из всех наук. Древнейшая наука астрономия


Астрономия - древнейшая из всех наук

Земля ночьюАстрономия - наука о небесных телах. Она изучает движение, строение и развитие небесных тел и их систем и применяет установленные ей законы для практических потребностей человечества.

Изучение звезд позволяет нам заглянуть в глубины этого удивительного мира, приблизится к пониманию Вселенной всех загадок и тайн, которые она в себе несет.

Астрономия - древнейшая из всех наук: зачатки ее существовали в Вавилоне и Египте еще несколько тысяч лет назад.

Уже первые наблюдатели неба заметили, что по Солнцу и звездам можно определить время суток. В полдень, например, Солнце занимает самое высокое за данный день положение. По изменению вида луны (серп, полный диск и др.), по положению на небе Солнца и других светил можно определить большие промежутки времени, то есть создавать календарь. Кочевники и мореплаватели по звездам научились определять стороны горизонта.

Наблюдая ежедневный восход и заход Солнца и Луны, видимое перемещение звезд относительно горизонта, люди раньше думали, что все небесные светила движутся вокруг неподвижной Земли. Мир земной и мир небесный противопостовлялись друг другу.

Астрономия же показала, что Земля представляет собой небесное тело; как и сходные с ней небесные тела, называемые планетами, Земля обращается вокруг Солнца. Звезды - это светила, подобные Солнцу, и состоят из раскаленного газа. По размеру они гораздо больше земли и во многих случаях значительно превосходят Солнце.

Созвездие Льва, когда в нем находится яркая планета

Созвездие Льва, когда в нем находится яркая планета

Увлекательная наука о небесных светилах рассказывает нам, что есть небесные тела, непохожие на земной шар, что не только на Земле возможна жизнь. Знание основ астрономии помогает приобретать передовое научное мировоззрение.

astronom-us.ru

Краткая история развития астрономии. - Юрий Караваенко - Материалы по астрологии - Каталог статей

Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н.э. Однако известно, что еще за 3 тысячи лет до н. э. египетские жрецы подметили, что разливы Нила, регулировавшие экономическую жизнь страны, наступали вскоре после того, как перед восходом Солнца на востоке появлялась самая яркая из звезд, Сириус, скрывавшаяся до этого около двух месяцев в лучах Солнца. Из этих наблюдений египетские жрецы довольно точно определили продолжительность тропического года.

В Древнем Китае за 2 тысячи лет до н.э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать наступление солнечных и лунных затмений. Астрономия, как и все другие науки, возникла из практических потребностей человека. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением па ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летосчислении (составлении календарей).

Все это могли дать и давали наблюдения над движением небесных светил, которые велись в начале без всяких инструментов, были не очень точными, но вполне удовлетворяли практические нужды того времени. Из таких наблюдений и возникла паука о небесных телах - астрономия.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов. Постепенно стали создаваться простейшие астрономические инструменты и разрабатываться математические методы обработки наблюдений.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх (II в. до н.э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н.э.). Будучи принципиально неверной, система Птолемея тем не менее позволяла предвычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение нескольких веков.

Системой мира Птолемея завершается этап развития древнегреческой астрономии. Развитие феодализма и распространение христианской религии повлекли за собой значительный упадок естественных наук, и развитие астрономии в Европе затормозилось на многие столетия. В эпоху мрачного средневековья астрономы занимались лишь наблюдениями видимых движений планет и согласованием этих наблюдений с принятой геоцентрической системой Птолемея.

Рациональное развитие в этот период астрономия получила лишь у арабов и народов Средней Азии и Кавказа, в трудах выдающихся астрономов того времени - Аль-Баттани (850-929 гг.), Бируни (973-1048 гг.), Улугбека (1394-1449 гг.) и др. В период возникновения и становления капитализма в Европе, который пришел на смену феодальному обществу, началось дальнейшее развитие астрономии. Особенно быстро она развивалась в эпоху великих географических открытий (XV-XVI вв.). Нарождавшийся новый класс буржуазии был заинтересован в эксплуатации новых земель и снаряжал многочисленные экспедиции для их открытия. Но далекие путешествия через океан требовали более точных и более простых методов ориентировки и исчисления времени, чем те, которые могла обеспечить система Птолемея. Развитие торговли и мореплавания настоятельно требовало совершенствования астрономических знаний и, в частности, теории движения планет. Развитие производительных сил и требования практики, с одной стороны, и накопленный наблюдательный материал, - с другой, подготовили почву для революции в астрономии, которую и произвел великий польский ученый Николай Коперник (1473-1543), разработавший свою гелиоцентрическую систему мира, опубликованную в год его смерти.

Учение Коперника явилось началом нового этапа в развитии астрономии. Кеплером в 1609-1618 гг. были открыты законы движений планет, а в 1687 г. Ньютон опубликовал закон всемирного тяготения.

Новая астрономия получила возможность изучать не только видимые, но и действительные движения небесных тел. Ее многочисленные и блестящие успехи в этой области увенчались в середине XIX в. открытием планеты Нептун, а в наше время - расчетом орбит искусственных небесных тел.

  Следующий, очень важный этап в развитии астрономии начался сравнительно недавно, с середины XIX в., когда возник спектральный анализ и стала применяться фотография в астрономии. Эти методы дали возможность астрономам начать изучение физической природы небесных тел и значительно расширить границы исследуемого пространства. Возникла астрофизика, получившая особенно большое развитие в XX в. и продолжающая бурно развиваться в наши дни. В 40-х гг. XX в. стала развиваться радиоастрономия, а в 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению фактически нового раздела астрофизики - рентгеновской астрономии. 

   2000 лет тому назад расстояние Земли от Солнца, согласно Аристарху Самосскому, составляло около 361 радиуса Земли, т.е. около 2.300.000 км. Аристотель считал, что "сфера звезд” размещается в 9 раз дальше. Таким образом, геометрические масштабы мира 2000 лет тому назад "измерялись” величиной в 20.000.000 км.

При помощи современных телескопов астрономы наблюдают объекты, находящиеся на расстоянии около 10 млрд. световых лет, что составляет 9,5-1022 км. Таким образом, за упомянутый промежуток времени масштабы мира "выросли” в 5-1015 раз.

Согласно византийским христианским богословам (середина IV столетия н.э.) мир был создан 5508 лет до н.э., т.е. менее чем 7,5 тыс. лет тому назад.

Современная астрономия дала доказательства того, что уже около 10 млрд. лет тому назад доступная для астрономических наблюдений Вселенная существовала в виде гигантской системы галактик. Масштабы во времени "выросли” в 13 млн. раз.

Но главное, конечно, не в цифровом росте пространственных и временных масштабов, хотя и от них захватывает дыхание. Главное в том, что человек, наконец, вышел на широкий путь понимания действительных законов мироздания.

www.xn--h1aaxcdl.xn--p1ai

Древняя наука - Астрономия

Величественна картина звездного неба! Мириады звёзд, сверкая и переливаясь, манят к себе любознательные умы и взгляды. Человек всегда пытался и пытается понять, какое место он занимает во Вселенной, как устроен этот мир, всегда ли он существовал? Иесли не всегда, то возник ли сам или создан богами. Постижение звёздного мира бесконечно, но начало познания неба просто, так как что большинство небесных явлений повторяются совершенно одинаково, несчётное количество раз. Однообразно повторяются - суточный путь Солнца, порядок восхода и захода созвездий, лунные фазы, а также изменения на небе, связанные со временами года. Эти небесные явления настолько срослись с жизнью, что ими пользуются люди, животные, растения. Деревья "знают", когда их почки могут начать распускаться, а человек и без часов может проснуться в назначенное им время. Птицы хорошо ориентируются по Солнцу, учитывая его дневное движение по небу; у них даже есть свои "навигационные" звёзды, по которым они определяют путь.

Всё это примеры астрономического ориентирования, выработанного живыми организмами бессознательно, в процессе эволюции.Именно практические потребности - ориентирование в пространстве и времени - привлекли внимание людей к небесным явлениям, к наблюдениям за перемещением Солнца, Луны, к суточному движению звёзд. Но и конечно же любознательность.Древние люди думали, что звёзды находятся только над плоской Землёй. Потом было открыто, что небо поворачивается вокруг нас, словно сфера с нарисованными на ней созвездиями.

Луна не только движется вместе со звёздами слева направо, но ещё перемещается среди них от ночи к ночи справа налево. Если же заметить, что в какую-то ночь Луна была рядом с яркой звездой, то она вернётся к ней через 27,3 суток. Так был открыт период времени - лунный сидерический месяц.

Наблюдая за месячным движением Луны среди звёзд, люди открыли, что она движется в сравнительно узкой области (полосе) небесной сферы, которую ныне называют поясом зодиака. Он был разделён на 27 или 28 "лунных станций" - зодиакальных созвездий. Это были небольшие группы звёзд, удалённые друг от друга примерно на 13 градусов, так, что Луна при движении по небосводу каждую ночь оказывалась в следующей группе (созвездии).

Великим открытием было и то, что по зодиаку кочуют ещё и "блуждающие звёзды" - планеты. Их выделили уже в глубокой древности.С движением Солнца дело обстояло сложнее: ведь днём звёзд не видно. Но люди догадались, что и Солнце перемещается относительно звёзд. Наблюдая за его восходом и заходом люди видели, что место, где оно появляется над горизонтом, каждый день немного меняется. Замечая места восходов и закатов, они нашли в его движении новую важную закономерность. В дни летних солнцестояний светило вставало и садилось ближе всего к точке севера и несколько дней, самых длинных в году, не меняло мест заката и восхода. Потом точки восхода и заката день за днём удалялись от севера, пока через полгода не достигали мест, самых близких к югу, что означало наступление зимнего солнцестояния. В середине между солнцестояниями по линии восток - запад располагались точки, где дважды в году Солнце восходило, чтобы отмерить день равный ночи.

Астрономические наблюдения, связанные с необходимостью ориентироваться во времени и пространстве, возникли на заре человеческой культуры. Уже тогда, задолго до появления письменности и государств, были сделаны важные открытия, связанные с расположением и видимым движением светил по небу.

Так возникла астрономия - древнейшая из наук.В конце каменного века (5-3 тысячелетия до н.э.) в благоприятных климатических условиях зародились древние цивилизации. Наблюдение за небом стало важнейшим делом для жрецов. Проходили тысячелетия медленного накопления астрономических знаний. По уровню развития астрономии можно довольно верно судить об общем уровне древней цивилизации.

Таким образом, намного раньше того, как человек научился ориентироваться на Земле и создал географию, он уже ориентировался во Вселенной, создав её первые модели. Овладение пространством началось с космоса и лишь впоследствии распространилось на Землю.

Кирилл Гуровой, В.В. Кажанов

meteorit.sosbb.net

Астрономия. Развитие астрономических исследований | Природоведение. Реферат, доклад, сообщение, краткое содержание, конспект, сочинение, ГДЗ, тест, книга

Тема: Вселенная

Клавдий Птолемей

Астрономия является одной из древних наук. В переводе с греческого языка астрономия означа­ет «астро» — звезда и «номос» — закон. Этим сло­вом древние греки называли науку о строении и раз­витии небесных тел и Вселенной. Возникла она из практических потребностей человека. По положе­нию звёзд первобытные земледельцы определяли наступление времени года. Кочевые племена и мо­реплаватели по звёздам и Солнцу ориентировались во время передвижения, на основе видимых движе­ний Солнца и Луны были созданы календари.

Рис. 73. Модель Птолемея
Рис. 74. Модель Коперника
Николай Коперник

Развитие астрономических исследований. Первые астрономические записи были сделаны за 4 тыс. лет до наших дней, а ещё 5 тыс. лет тому назад египетские жрецы по по­явлению на небе звезды Сириус определяли время разлива реки Нил. Китайские астрономы 4 тыс. лет тому назад, изучив движения Солнца и Луны, предсказывали солнечные и лунные затмения. Ре­зультаты астрономических наблю­дений передавались из поколения в поколение. Использовав эти на­блюдения, древнегреческий учё­ный Клавдий Птолемей создал модель мира с неподвижной Зем­лёй в центре (рис. 73). Подобный взгляд на Вселенную существовал почти 1500 лет. Но в XVI в. польский астроном Николай Коперник предложил другую модель — с Солнцем в центре, её мы используем и сегод­ня (рис. 74). Выдающийся астро­ном Галилео Галилей с помощью созданного им же телескопа сде­лал многие астрономические от­крытия в подтверждение модели Вселенной Коперника. Материал с сайта //iEssay.ru

Галилео Галилей

Значительного развития астро­номия достигла и в Украине. В 1821 г. в г. Николаеве для обслуживания Черноморского флота была созда­на астрономическая обсерватория-лаборатория, в ко­торой проводились астрономические исследования.

В начале XX в. работы физика-теоретика Альберта Эйнштейна, американского астронома Эдвина Габбла окончательно подтвердили модель Николая Коперника.

В отличие от астрономов древности мы знаем, что, кроме звёзд, во Вселенной существует множество различных небесных тел и их систем. Поэтому само понятие астрономии как науки сегодня изменилось.

Астрономия — наука о движении, строении и раз­витии небесных тел и их систем.

iessay.ru

Астрономия как наука

1. Астрономическая карта мира и ее творцы

На протяжении веков человек стремился разгадать тайну великого мирового «порядка» Вселенной, которую древнегреческие философы и назвали Космосом (в переводе с греческого - «порядок», «красота»), в отличие от Хаоса, предшествовавшего, как они считали, появлению Космоса.

Первые, дошедшие до нас естественнонаучные представления об окружающей нас Вселенной сформулировали древнегреческие философы в 7-5 вв. до н. э. Их натурфилософские учения, опирались на накопленные ранее астрономические знания египтян, шумеров, вавилонян, арийцев, но отличались существенной ролью объясняющих гипотез, стремлением проникнуть в скрытый механизм явлений.

Наблюдение круглых дисков Солнца, Луны, закругленной линии горизонта, а так же границы тени Земли, наползающей на луну при ее затмениях, правильная повторяемость дня и ночи, времен года, восходов и заходов светил - все это наводило на мысль, что в основе строения вселенной лежит принцип круговых форм и движений, «цикличности» и равномерности изменений. Но вплоть до 2 в. до н. э. не существовало отдельного учения о небе, которое объединило бы все знания в этой области в единую систему. Представления о небесных явлениях, как и явлениях «в верхнем воздухе» - буквально о «метеорных явлениях», долгое время входили в общие умозрительные учения о природе в целом. Эти учения несколько позднее стали называть физикой (от греческого слова «фюзис» - природа - в смысле периоды, существа вещей и явлений). Главным содержанием этой древней полу философской «физики», или в нашем понимании - скорее натурфилософии, включавшей в качестве едва ли не главных элементов космологию и космогонию, были поиски того неизменного начала, которое, как думали, лежит в основе мира изменчивых явлений.

Все накопленные веками знания о природе вплоть до технического и житейского опыта были объединены, систематизированы, логически предельно развиты в первой универсальной картине мира, которую создал в 4 веке до н. э. величайший древнегреческий философ (и, по существу, первый физик) Аристотель (384 - 322 гг. до н. э.) большую часть жизни проведший в Афинах, где он основал свою знаменитую научную школу. Это было учение о структуре, свойствах и движении всего, что входит в понятие природы. Вместе с тем, Аристотель впервые отделил мир земных (вернее, «подлунных») явлений от мира небесного, от собственно Космоса с его якобы особенными законами и природой объектов. В специальном тракте «о небе» Аристотель нарисовал свою натурфилософскую картину мира.

Под Вселенной Аристотель подразумевал всю существующую материю (состоявшую, по его теории, из четырех обычных элементов - земли, воды, воздуха, огня и пятого - небесного - вечно движущегося эфира, который от обычной материи отличался еще и тем, что не имел не легкости, ни тяжести). Аристотель критиковал Анаксагора за отождествления эфира с обычным материальным элементом - огнем. Таким образом, Вселенная, по Аристотелю, существовала в единственном числе.

В картине мира Аристотеля впервые была высказана идея взаимосвязанности свойств материи, пространства и времени. Вселенная представлялась конечной и ограничивалась сферой, за пределами которой не мыслилось ничего материального, а потому не могло быть и самого пространства, поскольку оно определялось, как нечто, что было (или могло быть заполнено материей). За пределами материальной вселенной не существовало и времени, которое Аристотель с гениальной простотой и четкостью определил как меру движения и связал с материей, пояснив, что «нет движения без тела физического». За пределами материальной Вселенной Аристотель помещал нематериальный, духовный мир божества, существование которого постулировалось.

Великий древнегреческий астроном Гиппарх (ок.190-125 г. до н. э.) первым попытался раскрыть механизм наблюдаемых движений светил. С этой целью он впервые использовал в астрономии предложенный за сто лет до него знаменитым математиком Аполлонием Пергским геометрический метод описания неравномерных периодических движений как результата сложения более простых - равномерных круговых. Между тем именно к раскрытию простой сущности наблюдаемых сложных астрономических явлений призывал еще Платон. Неравномерное периодическое движение можно описать с помощью кругового двумя способами: либо вводя понятие эксцентрика – окружности, по которой смещен, относительно наблюдателя, либо разлагая наблюдаемое движение на два равномерных круговых, с наблюдателем в центре кругового движения. В этой модели по окружности вокруг наблюдателя движется не само тело, а центр вторичной окружности (эпицикла), по которой и движется тело. Первая окружность называется деферентом (несущей). В дальнейшем в древнегреческой астрономии использовались обе модели. Гиппарх же использовал первую для описания движения Солнца и Луны. Для Солнца и Луны он определил положение центров их эксцентриков, и впервые в истории астрономии разработал метод и составил таблицы для предвычисления моментов затмений (с точностью до 1-2 часов).

Появившаяся в 134 г. до н. э. новая звезда в созвездии Скорпиона навела Гиппарха на мысль, что изменения происходят и в мире звезд. Чтобы в будущем легче было замечать подобные изменения, Гиппарх составил каталог положений на небесной сфере 850 звезд, разбив все звезды на шесть классов и назвав самые яркие звездами первой величины.

Начатое математическое описание астрономических явлений спустя почти три века достигло своей вершины в системе мира знаменитого александрийского астронома, географа и оптика Клавдия Птолемея (? - 168 г.). Птолемей дополнил собственными наблюдениями до 1022 звезд каталог Гиппарха. Он изобрел новый астрономический инструмент – стенной круг, сыгравший впоследствии существенную роль в средневековой астрономии Востока и в европейской астрономии XVI в., особенно в наблюдениях Тихо Браге.

Его фундаментальный труд – «Большое математическое построение астрономии в XVI книгах», по-гречески «Мег але Синтаксис», еще в древности получил широкую известность под названием «Мгистэ» («Величайшее»). Европейцы узнали о нем от арабских астрономов – под искаженным названием «Ал Маджисти», или в латинизированой трактации, «Альмагест». В нем была представлена вся совокупность астрономических знаний древнего мира. В этом труде Птолемей математический аппарат сферической астрономии – тригонометрию. В течение столетий использовали вычисленные им таблицы синусов.

Опираясь на достижения Гиппарха, Птолемей пошел дальше в изучении главных тогда для астрономов подвижных светил. Он существенно дополнил и уточнил теорию Луны, вновь переоткрыв эвекцию. Вычисленные Птолемеем на этом основании более точные таблицы положения Луны позволили ему усовершенствовать теорию затмений. Для определения географической долготы места наблюдения точное предсказание момента наступления затмений имело большое значение. Но подлинным научным подвигом ученого стало создание им первой математической теории сложного видимого движения планет, чему посвящено пять из тринадцати книг «Альмагеста».

2. Галактики

Галактики стали предметом космогонических исследований с 20-х годов нашего века, когда была надежно установлена их действительная природа и оказалось, что это не туманности, т.е. не облака газа и пыли, находящиеся неподалеку от нас, а огромные звездные миры, лежащие от нас на очень больших расстояниях от нас. В основе всей современной космологии лежит одна фундаментальная идея - восходящая к Ньютону идея гравитационной неустойчивости. Вещество не может оставаться однородно рассеянным в пространстве, ибо взаимное притяжение всех частиц вещества стремиться создать в нем сгущения тех или иных масштабов и масс. В ранней Вселенной гравитационная неустойчивость усиливала первоначально очень слабые нерегулярности в распределении и движении вещества и в определенную эпоху привела к возникновению сильных неоднородностей: "блинов" - протоскоплений. Границами этих слоев уплотнения служили ударные волны, на фронтах которых первоначально невращательное, безвихревое движение вещества приобретало завихренность. Распад слоев на отдельные сгущения тоже происходил, по-видимому, из-за гравитационной неустойчивости, и это дало начало протогалактикам. Многие из них оказывались быстро вращающимися благодаря завихренному состоянию вещества, из которого они формировались. Фрагментация протогалактических облаков в результате их гравитационной неустойчивости вела к возникновению первых звезд, и облака превращались в звездные системы - галактики. Те из них, которые обладали быстрым вращением, приобретали из-за этого двухкомпонентную структуру - в них формировались гало более или менее сферической формы и диск, в котором возникали спиральные рукава, где и до сих пор продолжается рождение звезд Протогалактики, у которых вращение было медленнее или вовсе отсутствовало, превращались в эллиптические или неправильные галактики. Параллельно с этим процессом происходило формирование крупномасштабной структуры Вселенной - возникали сверхскопления галактик, которые, соединяясь своими краями, образовывали подобие ячеек или пчелиных сот; их удалось распознать в последние годы.

В 20-30 гг. XX века Хаббл разработал основы структурной классификации галактик - гигантских звездных систем, согласно которой различают три класса галактик:

I. Спиральные галактики - характерны двумя сравнительно яркими ветвями, расположенными по спирали. Ветви выходят либо из яркого ядра (такие галактики обозначаются S), либо из концов светлой перемычки, пересекающей ядро (обозначаются - SB).

II. Эллиптические галактики (обозначаются Е) - имеющие форму эллипсоидов.

Представитель - кольцевая туманность в созвездии Лиры находится на расстоянии 2100 световых лет от нас и состоит из светящегося газа, окружающего центральную звезду. Эта оболочка образовалась, когда состарившаяся звезда сбросила газовые покровы и они устремились в пространство. Звезда сжалась и перешла в состояние белого карлика, по массе сравнимого с нашим солнцем, а по размеру с Землей.

mirznanii.com


Смотрите также