Древние астрономические приборы презентация. .Презентация к работе"История развития астрономии"
История современного города Афины.
Древние Афины
История современных Афин

Презентация - Астрономические приборы. Древние астрономические приборы презентация


Презентация - Астрономические приборы

Слайды и текст этой презентации

Слайд 1

Простейшие астрономические приборы

Слайд 2

С помощью гномона решаются все основные задачи приближенного ориентирования на местности — определение направления меридиана, географической широты, времени и географической долготы.Гномон

Слайд 3

Астрономический посох

Слайд 4

Квадрант был известен с древних времен. Это был простейший инструмент, с помощью которого можно было определять широту места наблюдения. Квадранты использовались не только для географических измерений, но и для вычислений угла установки артиллерийских орудий, астрономических вычислений или вместо астролябии, поэтому на него наносилось несколько шкал.  Древний квадрант состоял из квадратной дощечки, в одном из углов которой подвешивался отвес, а на противоположные грани наносились значения широты. При этом 45 градусам соответствовал угол, противоположный углу крепления отвеса.  Квадрант

Слайд 5

Более поздние квадранты были треугольной формы и их изготавливали из меди или латуни. Для вычисления широты было необходимо навести одну из неотградуированных граней дощечки на Полярную звезду и по отвесу отсчитать значение широты.   Так как Полярная звезда находится почти точно над Северным полюсом, показания квадранта имели приемлемую точность. В Южном полушарии, где Полярная звезда не видна, квадрант наводили на Альфу Южного Креста, расположенную почти над Южным полюсом. Недостатки квадранта были в том, что точность измерений была невысока и его невозможно было применять днем или при облачности.Квадрант

Слайд 6

Астролябия

Слайд 7

Астролябия это просто. Элементарное руководство: Измерив высоту Солнца или звезды с помощью алидады, поворачивают паук так, чтобы изображение точки эклиптики, в которой Солнце находится в данный момент года, либо изображение звезды попало на изображение альмукантарата, соответствующего этой высоте. При этом на лицевой стороне астролябии получается стереографическое изображение неба в момент наблюдения, после чего определяется азимут светила и точное время, а также гороскоп (букв. «указатель часа») — градус эклиптики, восходящий над горизонтом в момент наблюдения.Астролябия

Слайд 8

Армиллярная сфера

Слайд 9

Солнечные часы

Слайд 10

http://www.astrogalaxy.ru/222.htmlИспользованные ресурсы

lusana.ru

Астрономия. Начальные сведения - физика, презентации

Данная презентация предназначена для ознакомления учащихся с начальными понятиями раздела "Астрономия" на вводном уроке. В презентации описаны предмет и методы изучения астрономии, рассмотрена связь с другими науками, история становления астрономии, как науки. Часть презентации посвящена описанию древних и современных астрономических приборов и величайших ученых- астрономов

Просмотр содержимого документа «Астрономия. Начальные сведения »

Презентация по астрономии Преподаватель физики ГБОУ СПО «Строгановский колледж» Пешкова Ольга Алексеевна

Презентация по астрономии

Преподаватель физики

ГБОУ СПО «Строгановский колледж»

Пешкова Ольга Алексеевна

Начальные сведения

Начальные сведения

Что изучает астрономия? Астрономия – наука о Вселенной. Слово «Астрономия» (от греч.) – а с т р о н – звезда и н о м о с – закон.

Что изучает астрономия?

  • Астрономия – наука о Вселенной.
  • Слово «Астрономия» (от греч.) –

а с т р о н – звезда и н о м о с – закон.

Небесные тела Небесные тела образуют с и с т е м ы различной сложности. Например : Солнце и окружающие его небесные тела образуют Солнечную систему. Солнечная система входит в состав Г а л а к т и к и.

Небесные тела

Небесные тела образуют с и с т е м ы различной сложности.

Например : Солнце и окружающие его небесные тела образуют Солнечную систему.

Солнечная система входит в состав

Г а л а к т и к и.

Наблюдение – основной источник информации о небесных телах, процессах и явлениях, происходящих во Вселенной. Для проведения наблюдений созданы обсерватории.
  • Наблюдение – основной источник информации о небесных телах, процессах и явлениях, происходящих во Вселенной.
  • Для проведения наблюдений созданы обсерватории.
Эксперимент – средство для исследования физических и астрономических явлений и воспроизведение их а наглядном виде.
  • Эксперимент – средство для исследования физических и астрономических явлений и воспроизведение их а наглядном виде.
Астрономия – фундаментальная наука. Астрономия связана с

Астрономия – фундаментальная наука.

Астрономия связана с

  • Астрофизикой
  • Математикой
  • Физикой, в частности с небесной механикой
  • Географией
  • Экологией и другими науками
Астрономия возникла из практических потребностей человека. В древнем Египте был создан календарь полностью согласованный с астрономическим.

Астрономия возникла из практических потребностей человека. В древнем Египте был создан календарь полностью согласованный с астрономическим.

Учение 1 : Люди считали, что Земля плоская и стоит на трёх китах (или на трёх слонах), киты плавают в океане (слоны стоят на черепахе, а черепаха плавает в океане). А на чем держится океан?

Учение 1 : Люди считали, что Земля плоская и стоит на трёх китах (или на трёх слонах), киты плавают в океане (слоны стоят на черепахе, а черепаха плавает в океане). А на чем держится океан?

Учение 2 : Небо – это огромный купол, который перекрывает Землю. К куполу прикреплены Звёзды и по нему в колесницах разъезжают Солнце (днём) и Луна (ночью). Существовала легенда, что некий странник, дойдя до края Земли, убедился в этом воочию.

Учение 2 : Небо – это огромный купол, который перекрывает Землю. К куполу прикреплены Звёзды и по нему в колесницах разъезжают Солнце (днём) и Луна (ночью). Существовала легенда, что некий странник, дойдя до края Земли, убедился в этом воочию.

Учение 3 : в YI веке до н.э. Пифагор и его ученики уже знали, что Земля имеет форму шара и ни на чем не держится. Эратосфен точно измерил размеры Земного шара. Древнегреческие философы и математики разработали достаточно стройную картину мироздания.

Учение 3 : в YI веке до н.э. Пифагор и его ученики уже знали, что Земля имеет форму шара и ни на чем не держится. Эратосфен точно измерил размеры Земного шара. Древнегреческие философы и математики разработали достаточно стройную картину мироздания.

Взгляды Аристотеля на строение Вселенной

Взгляды Аристотеля на строение Вселенной

  • Он ответил на два вопроса: если Земля шар и ни на чем не держится, то почему не падает? Если Земля - шар, то люди на другом полушарии стоят вверх ногами – как же они это не чувствуют?
Земля – естественный центр Вселенной, а все тяжелые тела стремятся к этому центру. Но раз Земля – центр, то ей некуда падать. А люди в любом месте Земли стоят так, чтобы центр был у них под ногами. Хотя с точки зрения современной науки такое объяснение наивно, в то время оно было прогрессивным.

Земля – естественный центр Вселенной, а все тяжелые тела стремятся к этому центру. Но раз Земля – центр, то ей некуда падать. А люди в любом месте Земли стоят так, чтобы центр был у них под ногами. Хотя с точки зрения современной науки такое объяснение наивно, в то время оно было прогрессивным.

Во времена Аристотеля, кроме Луны и Солнца, было известно еще пять небесных тел. Их называли планетами. Планета – ( греч.) блуждающая .

Во времена Аристотеля, кроме Луны и Солнца, было известно еще пять небесных тел. Их называли планетами.

Планета – ( греч.) блуждающая .

(греч. gnomon), древнейший астрономический инструмент, состоящий из вертикального стержня на горизонтальной площадке. По длине и направлению тени стержня можно определять высоту и азимут Солнца. Самая короткая в течение суток тень указывает направление полуденной линии . В древности с помощью Г. определяли наклон эклиптики к экватору и географическую широту места. В настоящее время Г. применяется только в виде солнечных часов.
  • (греч. gnomon), древнейший астрономический инструмент, состоящий из вертикального стержня на горизонтальной площадке. По длине и направлению тени стержня можно определять высоту и азимут Солнца. Самая короткая в течение суток тень указывает направление полуденной линии . В древности с помощью Г. определяли наклон эклиптики к экватору и географическую широту места. В настоящее время Г. применяется только в виде солнечных часов.
Астрономический посох

Астрономический посох

  • Астрономический посох использовал Гиппарх для измерения небесных координат
  • Поперечную палку на астрономическом посохе (1) устанавливали так, чтобы лучи от двух светил, проходя через визирные отверстия на планке, попадали в визирное отверстие на посохе и в глаз наблюдателя.
Гиппарх (2 в. до н.э.)

Гиппарх (2 в. до н.э.)

  • Небесные координаты
  • Движение Солнца
  • Каталог звезд
  • Понятие «Звездная величина»
Квадрант – четверть градуированного круга с подвижной линейкой Квадрант давал наибольшую точность измерения.
  • Квадрант – четверть градуированного круга с подвижной линейкой
  • Квадрант давал наибольшую точность измерения.
  • Астролябия - угломерный инструмент для измерения высот небесных светил и углов на земной поверхности. Использовался до середины 18 века в морской навигации и гидрографии.
1) угломерный прибор, служивший до 18 в. для определения широт и долгот в астрономии, а также горизонтальных углов при землемерных работах. 2) Призменная А. — современный астрометрический прибор для определения моментов прохождения звёзд через некоторый альмукантарат с целью определения географической широты и поправки часов.
  • 1) угломерный прибор, служивший до 18 в. для определения широт и долгот в астрономии, а также горизонтальных углов при землемерных работах.
  • 2) Призменная А. — современный астрометрический прибор для определения моментов прохождения звёзд через некоторый альмукантарат с целью определения географической широты и поправки часов.
Принцип измерения на астролябии

Принцип измерения на астролябии

  • Точка подвеса астролябии совпадала с вертикальной линией, проходящей через ее центр, сквозь который прочерчивалась горизонтальная линия.
  • Верхний левый квадрат астролябии разделялся на градусы.
  • Измерения проводили трое: один держал инструмент за кольцо, другой направлял алидаду на светило, а третий производил отсчет градусов по шкале.
древний угломерный инструмент греческих астрономов для определения зенитных расстояний звезд.
  • древний угломерный инструмент греческих астрономов для определения зенитных расстояний звезд.
АРМИЛЯРНАЯ СФЕРА

АРМИЛЯРНАЯ СФЕРА

  • Шар, наглядно представлявший последовательность и движение небесных тел, преимущественно принадлежащих к нашей солнечной системе.
геодезический инструмент для определения направлений и измерения горизонтальных и вертикальных углов при геодезических работах, топографических и маркшейдерских съёмках, в строительстве и т.п. Основной рабочей мерой в теодолите служат горизонтальный и вертикальный круги с градусными минутными и секундными делениями.
  • геодезический инструмент для определения направлений и измерения горизонтальных и вертикальных углов при геодезических работах, топографических и маркшейдерских съёмках, в строительстве и т.п. Основной рабочей мерой в теодолите служат горизонтальный и вертикальный круги с градусными минутными и секундными делениями.
Древние обсерватории (Китай)

Древние обсерватории (Китай)

  • Проведенное комплексное исследование башни показало, что она была возведена в период Западного Чжоу (1046-771 годы до н. э.). Астрономы считают, что башня использовалась для астрономических наблюдений, а также для проведения обрядов жертвоприношения.
Гань Гун и Ши Шэнь (355 г. до н.э.)

Гань Гун и Ши Шэнь (355 г. до н.э.)

  • Каталог звезд
  • Обсерватория
Древние обсерватории (Самарканд)

Древние обсерватории (Самарканд)

Улугбек – настоящее имя Мухаммед Тарагай (15 в. до н.э.)

Улугбек – настоящее имя Мухаммед Тарагай (15 в. до н.э.)

  • Построил обсерваторию
  • Составил звездный каталог
  • Рассчитал солнечные и лунные затмения
  • Зафиксировал положение звезд на небесной сфере
Тихо Браге (16 век)

Тихо Браге (16 век)

  • Открыл новые звезды (созв. Кассиопеи)
  • Изобрел угломерные инструменты
  • Составил звездный каталог с точными координатами
Современные обсерватории

Современные обсерватории

kopilkaurokov.ru

Вводный урок. Предмет астрономии. - астрономия, презентации

Урок 1 Тема: Предмет астрономии

Урок 1

Тема: Предмет астрономии

1. Что изучает астрономия. Возникновение астрономии. Астрономия [греч. astron-звезда,светило, nomos -закон] - наука о строении, движении, происхождении и развитии небесных тел, их систем и всей Вселенной в целом. Вселенная- максимально большая область пространства, включающая в себя все доступные для изучения небесные тела и их системы.

1. Что изучает астрономия. Возникновение астрономии. Астрономия [греч. astron-звезда,светило, nomos -закон] - наука о строении, движении, происхождении и развитии небесных тел, их систем и всей Вселенной в целом. Вселенная- максимально большая область пространства, включающая в себя все доступные для изучения небесные тела и их системы.

Аллегория Яна Гевелия (1611-1687, Польша), изображает музу Уранию, покровительницу астрономии, которая в руках держит Солнце и Луну, а на голове у нее сверкает корона в виде звезды. Урания окружена нимфами, изображающими пять ярких планет, слева Венеру и Меркурия (внутренние планеты), справа – Марс, Юпитер и Сатурн.

Аллегория Яна Гевелия (1611-1687, Польша), изображает музу Уранию, покровительницу астрономии, которая в руках держит Солнце и Луну, а на голове у нее сверкает корона в виде звезды. Урания окружена нимфами, изображающими пять ярких планет, слева Венеру и Меркурия (внутренние планеты), справа – Марс, Юпитер и Сатурн.

Потребность в астрономических знаниях диктовалась жизненной необходимостью: Потребность счета времени, ведение календаря. Ориентация на местности, находить дорогу по звездам, особенно мореплавателям. Любознательность – разобраться в происходящих явлениях. Забота о своей судьбе, породившая астрологию. Падение болида, 2003г Великолепный хвост кометы МакНота, 2007г

Потребность в астрономических знаниях диктовалась жизненной необходимостью:

Потребность счета времени, ведение календаря.

Ориентация на местности, находить дорогу по звездам, особенно мореплавателям.

Любознательность – разобраться в происходящих явлениях.

Забота о своей судьбе, породившая астрологию.

Падение болида, 2003г

Великолепный хвост кометы МакНота, 2007г

Систематические астрономические наблюдения проводились тысячи лет назад Солнечный камень древних ацтеков Солнечные часы в обсерватории в Джайпуре Солнечная обсерватория в Дели, Индия

Систематические астрономические наблюдения проводились тысячи лет назад

Солнечный камень древних ацтеков

Солнечные часы в обсерватории в Джайпуре

Солнечная обсерватория в Дели, Индия

Древняя обсерватория Стоунхендж, Англия, построен в 19-15 веках до н.э. Стоунхендж (англ— «Каменная изгородь») — внесённое в список Всемирного наследия каменное мегалитическое сооружение (кромлех) на Солсберийской равнине в графстве Уилтшир (Англия). Находится примерно в 130 км к юго-западу от Лондона.

Древняя обсерватория Стоунхендж, Англия, построен в 19-15 веках до н.э.

Стоунхендж (англ— «Каменная изгородь») — внесённое в список Всемирного наследия каменное мегалитическое сооружение (кромлех) на Солсберийской равнине в графстве Уилтшир (Англия). Находится примерно в 130 км к юго-западу от Лондона.

38 пар вертикальных камней, высотой не менее 7 метров и весом не менее 50 тонн каждый. Диаметр занимаемого колоссами круга составляет 100 метров.

38 пар вертикальных камней, высотой не менее 7 метров и весом не менее 50 тонн каждый. Диаметр занимаемого колоссами круга составляет 100 метров.

  • О назначении гигантского сооружения до сих пор идут споры, наиболее популярными выглядят следующие гипотезы:
  • 1. Место ритуальных церемоний и погребений (жертвоприношений).
  • 2. Храм Солнца.
  • 3. Символ власти доисторических жрецов.
  • 4. Город Мертвых.
  • 5. Языческий собор или священное убежище на благословенной богом земле.
  • 6. Недостроенная АЭС (фрагмент цилиндра реакторного отделения).
  • 7. Астрономическая обсерватория древних ученых.
  • 8. Место посадки космических кораблей НЛО.
  • 9. Прообраз современного компьютера.
  • 10. Просто так, без причины.
Главная ось комплекса, идущая по аллее через пяточный камень, указывает на точку восхода Солнца в день летнего солнцестояния. Восход дневного светила в этой точке происходит только в определенный день в году - 22 июня.

Главная ось комплекса, идущая по аллее через пяточный камень, указывает на точку восхода Солнца в день летнего солнцестояния. Восход дневного светила в этой точке происходит только в определенный день в году - 22 июня.

Периоды развития астрономии : Древнейший I-й Античный мир (до Н.Э.) II-й Дотелескопический (Н.Э. до 1610г) Классический (1610 - 1900) III-й Телескопический (до спектроскопии, 1610-1814гг) IV-й Спектроскопический (до фотографии, 1814-1900гг) V-й Современный ( 1900-н.в) Разделы астрономии: 1. Практическая астрономия 2. Небесная механика 3. Сравнительная планетология 4. Астрофизика 5. Звездная астрономия 6. Космология 7. Космогония 2. Разделы астрономии. Связь с другими науками.

Периоды развития астрономии :

Древнейший

I-й Античный мир (до Н.Э.)

II-й Дотелескопический (Н.Э. до 1610г)

Классический (1610 - 1900)

III-й Телескопический (до спектроскопии, 1610-1814гг)

IV-й Спектроскопический (до фотографии, 1814-1900гг)

V-й Современный ( 1900-н.в)

Разделы астрономии:

1. Практическая астрономия

2. Небесная механика

3. Сравнительная планетология

4. Астрофизика

5. Звездная астрономия

6. Космология

7. Космогония

2. Разделы астрономии. Связь с другими науками.

Древо астрономических знаний

Древо астрономических знаний

Связь астрономии с другими науками 1 - гелиобиология 2 - ксенобиология 3 - космическая биология и медицина 4 - математическая география 5 - космохимия А - сферическая астрономия Б - астрометрия В - небесная механика Г - астрофизика Д - космология Е - космогония Ж - космофизика География и геофизика История и обществознание Литература Философия Физика Химия Биология

Связь астрономии с другими науками

1 - гелиобиология 2 - ксенобиология 3 - космическая биология и медицина 4 - математическая география 5 - космохимия А - сферическая астрономия Б - астрометрия В - небесная механика Г - астрофизика Д - космология Е - космогония Ж - космофизика

География и геофизика

История и обществознание Литература

Философия

Физика Химия Биология

3. Общие представления о масштабе и структуре Вселенной Вселенная- максимально большая область пространства, включающая в себя все доступные для изучения небесные тела и их системы. Реальный мир ,вероятно ,устроен так, что могут существовать другие вселенные с иными законами природы ,а физические постоянные могут иметь другие значения. Вселенная - уникальная всеобъемлющая система, охватывающая весь существующий материальный мир, безграничный в пространстве и бесконечный по разнообразию форм. 1 астрономическая единица = 149, 6 млн.км ~ 150 млн.км 1пк (парсек) = 206265 а.е. = 3,26 св. лет 1 световой год (св. год) - это расстояние, которое луч света со скоростью почти 300 000 км/с пролетает за 1 год и равен 9,46 миллионам миллионов километров!

3. Общие представления о масштабе и структуре Вселенной Вселенная- максимально большая область пространства, включающая в себя все доступные для изучения небесные тела и их системы. Реальный мир ,вероятно ,устроен так, что могут существовать другие вселенные с иными законами природы ,а физические постоянные могут иметь другие значения. Вселенная - уникальная всеобъемлющая система, охватывающая весь существующий материальный мир, безграничный в пространстве и бесконечный по разнообразию форм.

1 астрономическая единица = 149, 6 млн.км ~ 150 млн.км

1пк (парсек) = 206265 а.е. = 3,26 св. лет

1 световой год (св. год) - это расстояние, которое луч света со скоростью почти 300 000 км/с пролетает за 1 год и равен 9,46 миллионам миллионов километров!

Космические системы Солнечная система - Солнце и движущиеся вокруг тела (планеты, кометы, спутники планет, астероиды). Солнце – самосветящееся тело, остальные тела, как и Земля светят отраженным светом. Возраст СС ~ 5 млрд. лет. Таких звездных систем с планетами и другими телами во Вселенной огромное количество. Нептун находится на расстоянии 30 а.е.

Космические системы

Солнечная система - Солнце и движущиеся вокруг тела (планеты, кометы, спутники планет, астероиды). Солнце – самосветящееся тело, остальные тела, как и Земля светят отраженным светом. Возраст СС ~ 5 млрд. лет. Таких звездных систем с планетами и другими телами

во Вселенной

огромное количество.

Нептун находится

на расстоянии

30 а.е.

Солнце как звезда Вид Солнца в разных диапазонах электромагнитных волн

Солнце как звезда

Вид Солнца в разных диапазонах электромагнитных волн

Одним из самых примечательных объектов звездного неба является Млечный Путь-часть нашей Галактики. Древние греки называли его «молочный круг». Первые наблюдения в телескоп ,проведенные Галилеем, показали, что Млечный Путь – это скопление очень далеких и слабых звезд. Видимые на небе звезды- это ничтожная доля звезд, входящих в состав галактик.

Одним из самых примечательных объектов звездного неба является Млечный Путь-часть нашей Галактики. Древние греки называли его «молочный круг». Первые наблюдения в телескоп ,проведенные Галилеем, показали, что Млечный Путь – это скопление очень далеких и слабых звезд. Видимые на небе звезды- это ничтожная доля звезд, входящих в состав галактик.

Так выглядит наша Галактика сбоку

Так выглядит наша Галактика сбоку

Так выглядит наша Галактика сверху диаметр около 30 кпк

Так выглядит наша Галактика сверху диаметр около 30 кпк

Галактики- системы звезд, их скоплений и межзвездной среды. Возраст галактик 10-15 млрд. лет

Галактики- системы звезд, их скоплений и межзвездной среды. Возраст галактик 10-15 млрд. лет

4. Астрономические наблюдения и их особенности. Наблюдения – основной источник знаний о небесных телах, процессах и явлениях происходящих во Вселенной

4. Астрономические наблюдения и их особенности. Наблюдения – основной источник знаний о небесных телах, процессах и явлениях происходящих во Вселенной

Первым астрономическим инструментом можно считать гномон- вертикальный шест, закрепленный на горизонтальной площадке, позволявший определять высоту Солнца. Зная длину гномона и тени, можно определить не только высоту Солнца над горизонтом, но и направление меридиана, устанавливать дни наступления весеннего и осеннего равноденствий и зимнего и летнего солнцестояний.

Первым астрономическим инструментом можно считать гномон- вертикальный шест, закрепленный на горизонтальной площадке, позволявший определять высоту Солнца. Зная длину гномона и тени, можно определить не только высоту Солнца над горизонтом, но и направление меридиана, устанавливать дни наступления весеннего и осеннего равноденствий и зимнего и летнего солнцестояний.

Другие древние астрономические инструменты: астролябия , армиллярная сфера, квадрант, параллактическая линейка

Другие древние астрономические инструменты: астролябия , армиллярная сфера, квадрант, параллактическая линейка

Оптические телескопы Рефрактор (линзовый)- 1609г. Галилео Галилей в январе 1610г открыл 4 спутника Юпитера. Самый большой рефрактор в мире изготовлен Альваном Кларком (диаметр 102см), установлен в 1897г в Йерской обсерватории (США) с тех пор профессионалы не строят гигантские рефракторы.

Оптические телескопы

Рефрактор

(линзовый)-

1609г.

Галилео Галилей

в январе 1610г открыл

4 спутника Юпитера.

Самый большой рефрактор в мире изготовлен Альваном Кларком (диаметр 102см), установлен в 1897г в Йерской обсерватории (США) с тех пор профессионалы не строят гигантские рефракторы.

Рефракторы

Рефракторы

Рефлектор (используется вогнутое зеркало) - изобрел Исаак Ньютон в 1667г    
  • Рефлектор (используется вогнутое зеркало) - изобрел Исаак Ньютон в 1667г    
Большой Канарский телескоп Июль 2007 г - первый свет увидел телескоп Gran Telescopio Canarias на Канарских островах с диаметром зеркала 10,4 м, который является самым большим оптическим телескопом в мире по состоянию на 2009 год.

Большой Канарский телескоп Июль 2007 г - первый свет увидел телескоп Gran Telescopio Canarias на Канарских островах с диаметром зеркала 10,4 м, который является самым большим оптическим телескопом в мире по состоянию на 2009 год.

Крупнейшими телескопами-рефлекторами являются два телескопа Кека, расположенные на Гавайях, обсерватория Мауна-Кеа (Калифорния, США). Keck-I и Keck-II введены в эксплуатацию в 1993 и 1996 соответственно и имеют эффективный диаметр зеркала 9,8 м. Телескопы расположены на одной платформе и могут использоваться совместно в качестве интерферометра, давая разрешение, соответствующее диаметру зеркала 85 м.

Крупнейшими телескопами-рефлекторами являются два телескопа Кека, расположенные на Гавайях, обсерватория Мауна-Кеа (Калифорния, США). Keck-I и Keck-II введены в эксплуатацию в 1993 и 1996 соответственно и имеют эффективный диаметр зеркала 9,8 м. Телескопы расположены на одной платформе и могут использоваться совместно в качестве интерферометра, давая разрешение, соответствующее диаметру зеркала 85 м.

SALT - Большой южно-африканский телескоп (англ. Southern African Large Telescope ) — оптический телескоп с диаметром главного зеркала 11 метров, находящийся в Южно-африканской астрономической обсерватории , ЮАР. Это крупнейший оптический
  • SALT - Большой южно-африканский телескоп (англ. Southern African Large Telescope ) — оптический телескоп с диаметром главного зеркала 11 метров, находящийся в Южно-африканской астрономической обсерватории , ЮАР. Это крупнейший оптический

телескоп в южном полушарии.

Дата открытия

2005 год

Большой бинокулярный телескоп (англ. The Large Binocular Telescope (LBT) , 2005 г) — один из наиболее технологически передовых и обладающих наивысшим разрешением оптических телескопов в мире, расположенный на 3,3-километровой горе Грэхем в юго-восточной части штата Аризона (США). Телескоп обладает двумя зеркалами диаметром 8,4 м, разрешающая способность эквивалентна телескопу с одним зеркалом диаметром 22,8 м.

Большой бинокулярный телескоп (англ. The Large Binocular Telescope (LBT) , 2005 г) — один из наиболее технологически передовых и обладающих наивысшим разрешением оптических телескопов в мире, расположенный на 3,3-километровой горе Грэхем в юго-восточной части штата Аризона (США). Телескоп обладает двумя зеркалами диаметром 8,4 м, разрешающая способность эквивалентна телескопу с одним зеркалом диаметром 22,8 м.

телескоп VL Т (very large telescope) Паранальская обсерватория, Чили - телескоп, созданный по соглашению восьми стран. Четыре телескопа одного типа, диаметр главного зеркала составляет 8,2 м. Свет , собираемый телескопами эквивалентен одиночному зеркалу 16 метров в диаметре.

телескоп VL Т (very large telescope) Паранальская обсерватория, Чили - телескоп, созданный по соглашению восьми стран. Четыре телескопа одного типа, диаметр главного зеркала составляет 8,2 м. Свет , собираемый телескопами эквивалентен одиночному зеркалу 16 метров в диаметре.

GEMINI North и GEMINI South Телескопы-близнецы Gemini North и Gemini South имеют зеркала диаметром 8.1м - международный проект. Они установлены в Северном и Южном полушариях Земли ,чтобы охватить наблюдениями
  • GEMINI North и GEMINI South
  • Телескопы-близнецы Gemini North и Gemini South имеют зеркала диаметром 8.1м - международный проект. Они установлены в Северном и Южном полушариях Земли ,чтобы охватить наблюдениями

всю небесную сферу.

Gemini N построен

на горе Мауна Кеа

(Гавайи) на высоте

4100м над уровнем

моря, а Gemini S

сооружен в Сьеро

Пачон (Чили), 2737м.

Крупнейший в Евразии телескоп БТА - Большой Телескоп Азимутальный - находится на территории России, в горах Северного Кавказа и имеет диаметр главного зеркала 6 м. (монолитное зеркало 42т , 600т телескоп, можно видеть звезды 24-й величины). Он работает с 1976 и длительное время был крупнейшим телескопом в мире.

Крупнейший в Евразии телескоп БТА - Большой Телескоп Азимутальный - находится на территории России, в горах Северного Кавказа и имеет диаметр главного зеркала 6 м. (монолитное зеркало 42т , 600т телескоп, можно видеть звезды 24-й величины). Он работает с 1976 и длительное время был крупнейшим телескопом в мире.

30-метровый телескоп (Thirty Meter Telescope — TMT): диаметр главного зеркала 30 м (492 сегмента, каждый размером 1,4 м. Строительство нового объекта планируется начать в 2011 году.

30-метровый телескоп (Thirty Meter Telescope — TMT): диаметр главного зеркала 30 м (492 сегмента, каждый размером 1,4 м. Строительство нового объекта планируется начать в 2011 году. "Тридцатиметровый телескоп" к 2018 году возведут на вершине потухшего вулкана Мауна-Кеа (Mauna Kea) на Гавайях, в непосредственной близости от которого уже работает несколько обсерваторий (Mauna Kea Observatories).

Обсерватории – научно-исследовательские учреждения Mauna Kea на Гавайях - одно из самых прекрасных мест для наблюдения в мире. С высоты в 4200 метров телескопы могут выполнять измерения в оптическом, инфракрасном диапазоне и иметь длину волны в пол миллиметра. Телескопы обсерватории Мауна Кеа, Гавайи

Обсерватории – научно-исследовательские учреждения Mauna Kea на Гавайях - одно из самых прекрасных мест для наблюдения в мире. С высоты в 4200 метров телескопы могут выполнять измерения в оптическом, инфракрасном диапазоне и иметь длину волны в пол миллиметра.

Телескопы обсерватории Мауна Кеа, Гавайи

Зеркально-линзовый – 1930г, Барнхард Шмидт (Эстония).   В 1941г Д.Д. Максутов (СССР) создал менисковый с короткой трубой. Применяется любителями – астрономами.

Зеркально-линзовый – 1930г, Барнхард Шмидт (Эстония).   В 1941г Д.Д. Максутов (СССР) создал менисковый с короткой трубой. Применяется любителями – астрономами.

Радиотелескоп - астрономический инструмент для приёма радиоизлучения небесных объектов (в Солнечной системе, Галактике и Метагалактике) и исследования его характеристик. Состоит: антенна и чувствительный приемник с усилителем. Собирает радиоизлучение, фокусирует его на детекторе, настроенном на выбранную длину волны, преобразует этот сигнал. В качестве антенны используется большая вогнутая чаша или зеркало параболической формы. преимущества: в любую погоду и время суток можно вести наблюдение объектов, недоступные для оптических телескопов.
  • Радиотелескоп - астрономический инструмент для приёма радиоизлучения небесных объектов (в Солнечной системе, Галактике и Метагалактике) и исследования его характеристик.
  • Состоит: антенна и чувствительный приемник с усилителем. Собирает радиоизлучение, фокусирует его на детекторе, настроенном на выбранную длину волны, преобразует этот сигнал. В качестве антенны используется большая вогнутая чаша или зеркало параболической формы.
  • преимущества: в любую погоду и время суток можно вести наблюдение объектов, недоступные для оптических телескопов.
Радиоантенна Янского . Первым космическое радиоизлучение зарегистрировал Карл Янский в 1931 году. Его радиотелескоп представлял собой вращающуюся деревянную конструкцию, установленную на автомобильных колесах для исследования помех радиотелефонной связи на длинах волн λ = 4 000 м и λ = 14,6 м. К 1932 году стало ясно, что радиопомехи приходят из Млечного Пути, где расположен центр Галактики. А в 1942 было открыто радиоизлучение Солнца

Радиоантенна Янского . Первым космическое радиоизлучение зарегистрировал Карл Янский в 1931 году. Его радиотелескоп представлял собой вращающуюся деревянную конструкцию, установленную на автомобильных колесах для исследования помех радиотелефонной связи на длинах волн λ = 4 000 м и λ = 14,6 м.

К 1932 году стало ясно, что радиопомехи приходят из Млечного Пути, где расположен центр Галактики.

А в 1942 было открыто радиоизлучение Солнца

Аресибо (остров Пуэрто –Рико, 305м-забетонированная чаша потухшего вулкана, введен в 1963г). Самая большая радиоантенна в мире

Аресибо (остров Пуэрто –Рико, 305м-забетонированная чаша потухшего вулкана, введен в 1963г). Самая большая радиоантенна в мире

Радиотелескоп РАТАН- 600, Россия(Сев.Кавказ) , вступил в строй в 1967г , состоит из 895 отдельных зеркал размером 2,1х7,4м и имеет замкнутое кольцо диаметром 588м

Радиотелескоп РАТАН- 600, Россия(Сев.Кавказ) , вступил в строй в 1967г , состоит из 895 отдельных зеркал размером 2,1х7,4м и имеет замкнутое кольцо диаметром 588м

15-метровый телескоп Европейской Южной обсерватории

15-метровый телескоп Европейской Южной обсерватории

Система радиотелескопов VLA Very Large Array в Нью-Мексико (США) состоит из 27 тарелок, каждая диаметром 25 метров. Налаживают связь между радиотелескопами, находящимися в разных странах и даже на разных континентах. Такие системы получили название радиоинтерферометров со сверхдлинной базой (РСДБ). Дают максимально возможное угловое разрешение, в несколько тысяч раз лучшее, чем у любого оптического телескопа.

Система радиотелескопов VLA Very Large Array в Нью-Мексико (США) состоит из 27 тарелок, каждая диаметром 25 метров.

Налаживают связь между радиотелескопами, находящимися в разных странах и даже на разных континентах. Такие системы получили название радиоинтерферометров со сверхдлинной базой (РСДБ). Дают максимально возможное угловое разрешение, в несколько тысяч раз лучшее, чем у любого оптического телескопа.

LOFAR - первый цифровой радиотелескоп, который не нуждается ни в подвижных частях, ни в моторах . Открыт в 2010г. июнь. Много простых антенн, гигантские объемы данных и мощности компьютеров. LOFAR представляет собой гигантский массив, состоящий из 25 тысяч небольших антенн (от 50 см до 2 м в поперечнике). Диаметр LOFAR – примерно 1000 км. Антенны массива расположены на территории нескольких стран: Германии, Франции, Великобритании, Швеции.

LOFAR - первый цифровой радиотелескоп, который не нуждается ни в подвижных частях, ни в моторах . Открыт в 2010г. июнь. Много простых антенн, гигантские объемы данных и мощности компьютеров. LOFAR представляет собой гигантский массив, состоящий из 25 тысяч небольших антенн (от 50 см до 2 м в поперечнике). Диаметр LOFAR – примерно 1000 км. Антенны массива расположены на территории нескольких стран: Германии, Франции, Великобритании, Швеции.

Космические телескопы Космический телескоп «Хаббл» (Hubble Space Telescope, HST) — это целая обсерватория на околоземной орбите, общее детище NASA и Европейского космического агентства. Работает с 1990 г. Самый крупный оптический телескоп, который ведет наблюдения в инфракрасном, ультрафиолетовом диапазоне. За 15 лет работы «Хаббл» получил 700 000 снимков 22 000 всевозможных небесных объектов — звезд, туманностей, галактик, планет. Длина - 15,1 м, вес 11,6 тонн, зеркало 2,4 м

Космические телескопы

  • Космический телескоп «Хаббл» (Hubble Space Telescope, HST) — это целая обсерватория на околоземной орбите, общее детище NASA и Европейского космического агентства. Работает с 1990 г. Самый крупный оптический телескоп, который ведет наблюдения в инфракрасном, ультрафиолетовом диапазоне.
  • За 15 лет работы «Хаббл» получил 700 000 снимков 22 000 всевозможных небесных объектов — звезд, туманностей, галактик, планет.

Длина - 15,1 м, вес 11,6 тонн, зеркало 2,4 м

Рентгеновский телескоп «Чандра» (Chandra X-ray Observatory) вышел в космос 23 июля 1999 года. Его задача — наблюдать рентгеновские лучи, исходящие из областей, где есть очень высокая энергия, например, в областях звездных взрывов

Рентгеновский телескоп «Чандра» (Chandra X-ray Observatory) вышел в космос 23 июля 1999 года. Его задача — наблюдать рентгеновские лучи, исходящие из областей, где есть очень высокая энергия, например, в областях звездных взрывов

Телескоп «Спитцер» (Spitzer) — был запущен НАСА 25 августа 2003. Он наблюдает космос в инфракрасном диапазоне. В этом диапазоне находится максимум излучения слабосветящегося вещества Вселенной — тусклых остывших звезд, гигантских молекулярных облаков.

Телескоп «Спитцер» (Spitzer) — был запущен НАСА 25 августа 2003. Он наблюдает космос в инфракрасном диапазоне. В этом диапазоне находится максимум излучения слабосветящегося вещества Вселенной — тусклых остывших звезд, гигантских молекулярных облаков.

Телескоп «Кеплер» запустили 6 марта 2009 года. Это первый телескоп специально предназначенный для поиска экзопланет. Он будет наблюдать изменение яркости более чем 100 000 звезд в течение 3,5 лет. За это время он должен определить, сколько планет, подобных Земле, находится на пригодном для развития жизни удалении от своих звезд, составить описание этих планет и формы их орбит, изучить свойства звезд и многое другое.   Когда «Хаббл» «уйдет на пенсию», его место должен занять космический телескоп имени Джеймса Вебба (James Webb Space Telescope, JWST) . У него будет огромное зеркало 6,5 метров в диаметре. Его задача — найти свет первых звезд и галактик, которые появились сразу после Большого взрыва. Его запуск запланирован на 2013 год. И кто знает, что он увидит в небе и как изменится наша жизнь.
  • Телескоп «Кеплер» запустили 6 марта 2009 года. Это первый телескоп специально предназначенный для поиска экзопланет. Он будет наблюдать изменение яркости более чем 100 000 звезд в течение 3,5 лет. За это время он должен определить, сколько планет, подобных Земле, находится на пригодном для развития жизни удалении от своих звезд, составить описание этих планет и формы их орбит, изучить свойства звезд и многое другое.
  •  
  • Когда «Хаббл» «уйдет на пенсию», его место должен занять космический телескоп имени Джеймса Вебба (James Webb Space Telescope, JWST) . У него будет огромное зеркало 6,5 метров в диаметре. Его задача — найти свет первых звезд и галактик, которые появились сразу после Большого взрыва. Его запуск запланирован на 2013 год. И кто знает, что он увидит в небе и как изменится наша жизнь.
Астрономия - это такое поле приложения человеческих сил и интересов, которое может увлечь любого: и мечтателя, и физика, и лирика. Вот оно над вами - вечное звёздное небо, преисполненное несказанной красоты и высокой тайны. Оно открыто всем и вознаграждает верных, наполняя их жизнь светом и смыслом.
  • Астрономия - это такое поле приложения человеческих сил и интересов, которое может увлечь любого: и мечтателя, и физика, и лирика. Вот оно над вами - вечное звёздное небо, преисполненное несказанной красоты и высокой тайны. Оно открыто всем и вознаграждает верных, наполняя их жизнь светом и смыслом.
Планетарий — не просто культурный центр. В нем проводятся лекции для всех, кто увлекается астрономией. г. Минск, ул. Фрунзе, 2 (парк им. Горького) тел. (017) 294 33 64
  • Планетарий — не просто культурный центр. В нем проводятся лекции для всех, кто увлекается астрономией.
  • г. Минск, ул. Фрунзе, 2 (парк им. Горького)
  • тел. (017) 294 33 64

kopilkaurokov.ru

.Презентация к работе"История развития астрономии"

Слайд 1

ИСТОРИЯ РАЗВИТИЯ АСТРОНОМИИ

Слайд 2

Что такое астрономия? Астрономия изучает строение Вселенной, физическую природу, происхождение и эволюцию небесных тел и образованных ими систем. Астрономия исследует также фундаментальные свойства окружающей нас Вселенной. Как наука, астрономия основывается прежде всего на наблюдениях. В отличие от физиков астрономы лишены возможности ставить эксперименты. Практически всю информацию о небесных телах приносит нам электромагнитное излучение. Только в последние 40 лет отдельные миры стали изучать непосредственно: зондировать атмосферы планет, изучать лунный и марсианский грунт. Масштабы наблюдаемой Вселенной огромны и обычные единицы измерения расстояний – метры и километры – здесь малопригодны. Вместо них вводятся другие.

Слайд 3

Астрономическая единица используется при изучении Солнечной системы. Это размер большой полуоси орбиты Земли: 1 а.е.=149 млн.км. Более крупные единицы длины – световой год и парсек, а также их производные – нужны в звёздной астрономии и космологии. Световой год – расстояние, которое проходит световой луч в вакууме за один земной год. Парсек исторически связан с измерением расстояний до звёзд по их параллаксу и составляет 3,263 светового года = 206 265 а. е. Астрономия тесно связана с другими науками, прежде всего с физикой и математикой, методы которых широко применяются в ней. Но и астрономия является незаменимым полигоном, на котором проходят испытание многие физические теории. Космос – единственное место, где вещество существует при температурах в сотни миллионов градусов и почти при абсолютном нуле, в пустоте вакуума и в нейтронных звёздах. В последнее время достижения астрономии стали использоваться в геологии и биологии, географии и истории.

Слайд 4

Астрономия изучает фундаментальные законы природы и эволюцию нашего мира. Поэтому особенно велико её философское значение. Фактически, она определяет мировоззрение людей. Древнейшая из наук. За несколько тысяч лет до нашей эры в долинах крупных рек (Нил, Тигр и Евфрат, Инд и Ганг, Янцзы и Хуанхэ) осели землевладельцы. Календарь, составлявшийся жрецами Солнца и Луны, стал играть важнейшее значение в их жизни. Наблюдения за светилами жрецы проводили в древних обсерваториях, одновременно бывших и храмами. Их изучает археоастрономия. Археологи нашли довольно много подобных обсерваторий.

Слайд 5

Простейшие из них – мегалиты – представляли собой один (менгиры) или несколько (дольмены, кромлехи) камней, расположенных в строгом порядке друг относительно друга. Мегалиты отмечали место восхода и захода светил в определённое время года. Одним из самых известных сооружений древности является Стоунхедж, расположенный в Южной Англии. Его основная функция – наблюдение Солнца и Луны, определение дней зимнего и летнего солнцестояний, предсказание лунных и солнечных затмений.

Слайд 6

Астрономия древних цивилизаций Примерно за 4 тысячи лет до н.э. в долине Нила возникла одна из древнейших на Земле цивилизаций – египетская. Ещё через тысячу лет, после объединения двух царств (Верхнего и Нижнего Египта), здесь сложилось мощное государство. К тому времени, которое называют Древним царством, египтяне уже знали гончарный круг, умели выплавлять медь, изобрели письменность. Именно в ту эпоху были сооружены пирамиды. Тогда же, вероятно, появились египетские календари: лунно-звёздный – религиозный и схематический – гражданский. Астрономия египетской цивилизации началась именно с Нила. Египетские жрецы-астрономы заметили, что незадолго до начала подъёма воды происходят два события: летнее солнцестояние и первое появление Сириуса на утренней звезде после 70-дневного отсутствия на небосводе. Сириус, самую яркую звезду неба, египтяне назвали именем богини Сопдет. Греки произносили это имя как «Сотис». К тому времени в Египте существовал лунный календарь из 12 месяцев по 29 или 30 дней – от новолуния до новолуния. Чтобы его месяцы соответствовали сезонам года, раз в два-три года приходилось добавлять 13-й месяц. «Сириус» помогал определять время вставки этого месяца. Первым днём лунного года считался первый день новолуния, наступавший после возвращения этой звезды.

Слайд 7

Такой «наблюдательный» календарь с нерегулярным добавлением месяца, плохо подходил для государства, где существовали строгий учёт и порядок. Поэтому для административных и гражданских нужд был введён так называемый схематический календарь. В нём год делился на 12 месяцев по 30 дней с добавлением в конце года дополнительных 5 дней, т.е. содержал 365 дней. Египтяне знали, что истинный год на четверть дня больше, чем введённый, и достаточно добавить в каждом четвёртом, високосном, году вместо пяти дополнительных шесть дней, чтобы согласовать его с сезонами. Но этого сделано не было. За 40 лет, т.е. жизнь одного поколения, календарь уходил вперёд на 10 дней, не такую уж заметную величину, и писцы, управлявшие хозяйством, могли без труда приспособиться к медленным изменениям дат наступления сезонов. Через какое-то время в Египте появился и ещё один лунный календарь, приспособленный к скользящему гражданскому. В нём дополнительные месяцы вставлялись так, чтобы удержать начало года не вблизи момента появления Сириуса, около начала гражданского года. Этот «блуждающий» лунный календарь использовался наряду с другими двумя.

Слайд 8

В Древнем Египте существовала сложная мифология с множеством богов. Астрономические представления египтян были тесно связаны с ней. Согласно их верованиям, в середине мира находился Геб, один из прародителей богов, кормилец и защитник людей. Он олицетворял Землю. Жена и сестра Геба, Нут, была самим Небом. Её называли Огромной матерью звёзд и Рождающей богов. Считалось, что она каждое утро проглатывает светила и каждый вечер рождает их вновь. Из-за этой её привычки когда-то произошла ссора Нут и Геба. Тогда их отец Шу, Воздух, поднял Небо над Землёй и разлучил супругов. Нут была матерью Ра(Солнца) и звёзд и управляла ими. Ра в свою очередь создал Тота(Луну) как своего заместителя на ночном небе. Согласно другому мифу, Ра плывёт по небесному Нилу и освещает Землю, а вечером спускается в Дуат(ад). Там он путешествует по подземному Нилу, сражаясь с силами мрака, чтобы утром снова появиться на горизонте.

Слайд 9

Геоцентрическая система мира Во II веке до н.э. греческий учёный Птолемей выдвинул свою «систему мира». Он пытался объяснить устройство Вселенной с учётом видимой сложности движения планет. Считая Землю шарообразной, а размеры её ничтожными по сравнению с расстояниями до планет м тем более до звёзд. Птолемей, однако, вслед за Аристотелем утверждал, что Земля – неподвижный центр Вселенной, его система мира была названа геоцентрической. Вокруг Земли по Птолемею движутся (в порядке удалённости от Земли) Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн, звёзды. Но если движение Луны, Солнца, звёзд круговое, то движение планет гораздо сложнее.

Слайд 10

Каждая из планет, по мнению Птолемея, движется не вокруг Земли, а вокруг некой точки. Точка эта в свою очередь движется по кругу, в центре которого находится Земля. Круг, описываемый планетой вокруг движущейся точки, Птолемей назвал эпициклом, а круг, по которому движется точка около Земли, - деферентом. Эту ложную систему признавали почти 1 500 лет. Также её признавала и Христианская религия. В основу своего миропонимания христианство положило библейскую легенду о сотворении мира Богом за 6 дней. По этой легенде Земля является «сосредоточением» Вселенной, а небесные светила созданы для того, чтобы освещать Землю и украшать небесный свод. Всякое отступление от этих взглядов христианство беспощадно преследовало. Система мира Аристотеля – Птолемея, ставившая Землю в центр мироздания, как нельзя лучше отвечала христианскому вероучению. Таблицы, составленные Птолемеем, позволяли заранее определить положение планет на небе. Но с течением времени астрономы обнаружили расхождение наблюдаемых положений планет с предвычисленными. На протяжении веков думали, что система мира Птолемея просто недостаточно совершенна и пытаясь усовершенствовать её, вводили для каждой планеты новые и новые комбинации круговых движений.

Слайд 11

Гелиоцентрическая система мира Свою систему мира великий польский астроном Николай Коперник (1473-1543) изложил в книге «О вращениях небесных сфер», вышедшей в год его смерти. В этой книге он доказал, что Вселенная устроена совсем не так, как много веков утверждала религия. Задолго до Птолемея греческий учёный Аристарх утверждал, что Земля движется вокруг Солнца. Позже, в средние века, передовые учёные разделяли точку зрения Аристарха о строении мира и отвергали ложное учение Птолемея. Незадолго до Коперника великие итальянские учёные Николай Кузанский и Леонардо да Винчи утверждали, что Земля движется, что она совсем не находится в центре Вселенной и не занимает в ней исключительного положения. Почему же, несмотря на это, система Птолемея продолжала господствовать? Потому, что она опиралась на всесильную церковную власть, которая подавляла свободную мысль, мешала развитию науки. Кроме того, учёные, отвергавшие учение Птолемея и высказывавшие правильные взгляды на устройство Вселенной, не могли ещё убедительно их обосновать. Это удалось сделать только Николаю Копернику. После 30 лет упорнейшего труда, долгих размышлений и сложных

Слайд 12

математических вычислений он показал, что Земля – только одна из планет, а все планеты обращаются вокруг Солнца. Что же заключает в себе книга «О вращении небесных сфер» и почему она нанесла такой сокрушительный удар по системе Птолемея, которая со всеми изъянами держалась 14 веков под покровительством всесильной церкви? В этой книге Николай Коперник утверждал, что Земля и другие планеты – спутники Солнца. Он показал, что именно движением Земли вокруг Солнца и её суточным вращением вокруг своей оси объясняется видимое движение Солнца, странная запутанность в движении планет и видимое вращение небесного свода. Гениально просто Коперник объяснял, что мы воспринимаем движение далёких небесных тел так же, как и перемещение различных предметов на Земле, когда сами находимся в движении. Коперник как и древнегреческие учёные предположил, что орбиты, по которым движутся планеты, могут быть только круговыми. Спустя 75 лет немецкий астроном Иоганн Кеплер, продолжатель дела Коперника, доказал, что если бы Земля двигалась в пространстве, то при наблюдении неба в разное время нам должно было бы казаться, что звёзды смещаются, меняют своё положение на небе. Но таких смещений звёзд за много веков не заметил ни один астроном. Именно в этом сторонники учения Птолемея хотели видеть доказательства неподвижности Земли. Однако Коперник утверждал, что звёзды находятся на невообразимо огромных расстояниях. Поэтому ничтожные смещения их не могли быть замечены.

Слайд 13

Классика небесной механики Столетие после смерти Ньютона (1727г.) стало временем бурного развития небесной механики – науки, построенной на теории тяготения. И так уж получилось, что основной вклад в развитие этой науки внесли пять замечательных учёных. Один из них родом из Швейцарии, хотя большую часть жизни он проработал в России и Германии. Это Леонардо Эйлер. Четверо других – французы (Клеро, Д*Аламбер, Лагранж и Лаплас). В 1743 году Д*Аламбер опубликовал свой «Трактат о динамике», в котором сформулированы общие правила составления дифференциальных уравнений, описывающих движение материальных тел и их систем. В 1747 году он представил в Академию наук мемуары об отклонениях планет от эллиптического движения вокруг Солнца под действием их взаимного притяжения. Алексис Клод Клеро(1713-1765) уже в неполные 13 лет сделал свою первую научную работу по геометрии. Она была представлена в Парижскую академию, где и была зачитана его отцом. Через три года Клеро опубликовал новую работу – «О кривых двоякой кривизны.» Юношеские работы привлекли внимание крупных учёных-математиков. Они стали добиваться избрания юного таланта в Парижскую академию наук. Но по уставу членом Академии мог стать только человек, достигший 20 лет.

Слайд 14

Тогда известный математик Пьер Луи Мопертюи (1698-1759), покровитель Алексиса, решил повезти его в Базель к Иоганну Бернулли. Три года Клеро слушал лекции мастистого учёного, совершенствуя свои знания. По возвращению в Париж он, уже достигнув 20-летнего возраста, был избран в адъюнкты Академии(младший разряд академиков). В Париже Клеро и Мопертюи окунулись в самый разгар споров о форме Земли: сжата ли она у полюсов или вытянута? Мопертюи стал готовить экспедицию в Лапландию для измерения дуги меридиана. Принял в ней участие и Клеро. Вернувшись из Лапланлдии, Клеро получил звание действительного члена Академии наук. Жизнь его теперь была обеспечена и он смог посвятить её научным занятиям. Жозеф Луи Лагранж (1735-1813) учился, а затем и преподавал в Артиллерийском училище в Турине, в 18 лет уже став профессором. В 1759 году по рекомендации Эйлера 23-летнего Лагранжа избирают в члены Берлинской академии наук. В 1766 году он уже стал её президентом. Круг научных исследований Лагранжа был необычайно широк. Они посвящены механике, геометрии, математическому анализу, алгебре, теории чисел, а также теоретической астрономии. Основным направлением исследований Лагранжа было представление самых различных явлений в механике с единой точки зрения. Он вывел уравнение, описывающее поведение любых систем под действием сил. В области астрономии Лагранж много сделал для решения проблемы устойчивости Солнечной системы; доказал некоторые частные случаи устойчивого движения, в частности для малых тел, находящихся в так называемых треугольных точках либрации. Эти тела – астероиды –

Слайд 15

«троянцы» - были обнаружены уже в XX веке, спустя столетие после смерти Лагранжа. При решении конкретных задач небесной механики пути этих учёных неоднократно пересекались; они вольно или невольно соперничали друг с другом, приходя то к близким, то к совершенно различным результатам. Современная астрономия Вся история изучения Вселенной есть, в сущности, поиск средств, улучшающих человеческое зрение. До начала XVII века невооружённый глаз был единственным оптическим инструментом астрономов. Вся астрономическая техника древних сводилась к созданию различных угломерных инструментов, как можно более точных и прочных. Уже первые телескопы сразу резко повысили разрешающую и проницающую способность человеческого глаза. Вселенная оказалась совсем иной, чем она казалась до тех пор. Постепенно были созданы приёмники невидимых излучений и в настоящее время вселенную мы воспринимаем во всех диапазонах электромагнитного спектра – от гамма-лучей до сверхдлинных радиоволн. Более того, созданы приёмники корпускулярных излучений, улавливающие мельчайшие частицы – корпускулы (в основном ядра атомов и электроны), приходящие к нам от небесных тел. Если не бояться аллегорий, можно сказать, что Земля стала зорче, её «глаза», то есть совокупность всех приёмников космических излучений, способны

Слайд 16

фиксировать объекты, от которых до нас лучи света доходят за многие миллиарды лет. Благодаря телескопам и другим инструментам астрономической техники человек за три с половиной века проник в такие космические дали, куда свет – самое быстрое, что есть в этом мире – может добраться лишь за миллиарды лет! Это означает, что радиус изучаемой человечеством Вселенной растёт со скоростью, в огромное число раз превосходящей скорость света! Спектральный анализ - изучение интенсивности излучения в отдельных спектральных линиях, в отдельных участках спектра. Спектральный анализ является методом, с помощью которого определяется химический состав небесных тел, их температура, размеры, строение, расстояние до них и скорость их движения. Через 50 лет, надо полагать, будут открыты (если они имеются) планеты у ближайших к нам 5-10 звёзд. Скорее всего их обнаружат в оптическом, инфракрасном и субмиллиметровом диапазонах волн с внеатмосферных установок. В будущем появятся межзвёздные корабли-зонды для полёта к одной из ближайших звёзд в пределах расстояний 5-10 световых лет, разумеется, к той, возле которой будут обнаружены планеты. Такой корабль будет двигаться со скоростью не более 0,1 скорости света с помощью термоядерного двигателя.

Слайд 17

2000 лет тому назад расстояние Земли от Солнца, согласно Аристарху Самосскому, составляло около 361 радиуса Земли, т.е. около 2.300.000 км. Аристотель считал, что «сфера звёзд» размещается в 9 раз дальше. Таким образом, геометрические масштабы мира 2000 лет тому назад «измерялись» величиной в 20.000.000 км. При помощи современных телескопов астрономы наблюдают объекты, находящиеся на расстоянии около 10 млрд. световых лет.. Таким образом, за упомянутый промежуток времени масштабы мира выросли в 5.000.000.000.000.000 раз. Согласно византийским христианским богословиям мир был создан 5508 лет до н.э., т.е. менее чем 7.5 тыс. лет тому назад. Современная астрономия дала доказательства того, что уже около 10 млрд. лет тому назад доступная для астрономических наблюдений Вселенная существовала в виде гигантской системы галактик. Масштабы во времени «выросли» в 13 млн. раз. Но главное, конечно, не в цифровом росте пространственных и временных масштабов, хотя и от них захватывает дыхание. Главное в том, что человек, наконец, вышел на широкий путь понимания действительных законов мироздания.

Слайд 18

КоНеЦ Спасибо за внимание!

nsportal.ru