Название древние счеты. Кто придумал СЧЁТЫ? Когда появились первые?
История современного города Афины.
Древние Афины
История современных Афин

Счеты: история возникновения. Название древние счеты


Русские счеты - зри в корень

В России придумано множество полезных и нужных вещей, но знаем ли мы об этом, ценим ли, гордимся ли? Я вот, например, не знал, что именно русский народ изобрел идеальный вычислительный прибор — счеты — для облегчения счисления по десятичной системе. Эти счеты по справедливости называются русскими.В некоторых книгах можно встретить ошибочные указания, что  счеты якобы были изобретены китайцами, что якобы перешли к сибирским народам и что известные в русской истории купцы и промышленники Строгановы  привезли их в Россию.

Эти рассказы лишены основания в той же мере, как и предания о том, что предок Строгановых был татарским королевичем. К сожалению, рассказы о восточном происхождении русских счетов попали в «Историю государства Российского» Н.М. Карамзина и отсюда в большинство учебников. Лишь в начале 50-х годов ленинградский ученый И.Г. Спасский убедительно показал оригинальное русское происхождение этого счетного прибора. Первые русские счеты появились в 16-м веке и назывались «дощатый счет». «Дощатый счет» представлял собой доску или раму с чётками (шариками), надетыми на шнуры или веревки. На этом рисунке дано изображение «дощатого счета» с четырьмя счетными полями. Верхние 9—10 рядов имели 9—10 четок, нижние — от 1-й до 4-х четок для счета долей (дробей).  Счет на этом приборе  производится почти так, как на современных конторских счетах.  Можно смело утверждать, что этот русский народный счетный прибор самим народом был доведен до совершенства.

Постепенно совершенствуется конструкция этого счетного прибора. В начале XVIII столетия грубо сделанный ящик с вдетыми костяшками на бечевках превращается в искусно изготовленный прибор, напоминающий современную форму конторских счетов.  

Широкое использование в торговле и учреждениях невиданного на Западе счетного инструмента отмечали в XVII-XVIII столетиях многие иностранцы. Английский капитан Перри, находившийся в России с 1698 по 1712 год и издавший по возвращению на родину книгу «Положение России при нынешнем царе с описанием татар и других народов» (1716 г.), писал: «Для счета они пользуются изобретенным ими особым прибором с нанизанными на проволочные прутья шариками от четок или бусами, который они устраивают в ящике или небольшой раме, почти не отличающейся от тех, которыми пользуются у нас женщины, чтобы ставить на них утюги… Передвигая туда и сюда шарики, они справляются с делением и умножением разных сумм…»

Отметим, что западноевропейский быт не знал употребления счетов, и ловкость пользования ими у русских много раз вызывала удивление иностранцев. Во время наполеоновского похода в Россию в 1812 году попал в плен поручик Жан Виктор Понселэ. Партия пленных была отправлена в Саратов пешком, при морозах, доходивших до 30°. Среди немногих французов, вынесших четырехмесячный переход, был и Понселэ. В Саратове Понселэ создал новую область геометрии, которая под названием «проективной геометрии» изучается в наше время всеми лицами, получающими высшее математическое образование. Уезжая по окончании войны на родину, где Понселэ приобрел славу крупнейшего геометра, отца прикладной механики и военного инженера, он увез во Францию и русские счеты. Под названием булье счеты вошли в употребление во французской школе, а оттуда и в школах всех других стран.

Многие обороты нашей речи свидетельствуют о том, что счеты русским народом употребляются с очень давних пор. «Сбрасывать со счета», «прикидывать», «накидка», «скидка», «сводить счеты», «скостить» и много аналогичных выражений в народном языке появилось в результате пользования счетами в течение долгого времени.

Чаще всего на счетах приходится считать деньги. Широкое распространение русских десятичных счетов находится в связи с тем, что в России раньше, чем в других странах, возникла десятичная денежная система: рубль равен десяти гривенникам, гривенник — десяти копейкам, червонец — десяти рублям (впрочем, в XVIII веке червонец не сразу равнялся десяти рублям).

Историки приписывают приоритет введения десятичной денежной системы Соединенным Штатам Америки. Однако там деление доллара на 100 центов установилось только к концу XVIII века. В России же переход к десятичному делению денежных единиц был закончен в 1704 году, следовательно, на 100 лет ранее Соединенных Штатов Америки.

Не будем в дальнейшем повторять измышлений русофобов и либералов о чужеземном происхождении русских счетов, измышлений, иногда весьма курьезных, но один пример приведем. Американский историк математики Д. Е. Смит в специальном «исследовании» о счетных приборах, изданном в 1921 году, пишет, что русские счеты пришли в Россию через армян от турок и что  этот прибор у турок якобы называется «кулба», а у армян — „хораб". Однако ни тот ни другой из названных языков не знает тех слов, которые Смит им приписывает. В турецком языке есть слово «хораб», в армянском же—слово «кулба», и оба слова означают  одно и то же— именно «чулки».

К русским счетам мы не должны относиться с пренебрежением, как примитивному счетному аппарату. Этот прибор так долго и с такой честью служил русскому народу, что заслуживает нашей благодарности и уважения. тыц  и ещё

***Яркий пример использования счётов для решения задач приводится в рассказе Антона Чехова «Репетитор».

Гимназист-репетитор Егор Алексеич Зиберов задал малолетнему Пете Удодову задачу:

Купец купил 138 аршин черного и синего сукна за 540 рублей. Спрашивается, сколько аршин купил он того и другого, если синее стоило 5 рублей за аршин, а черное — 3 рубля.

Петя не смог решить её. Впрочем, и сам репетитор не справился, хотя знал, что «задача, собственно говоря, алгебраическая» и «ее с иксом и игреком решить можно». Действительно, если предположить, что х — это количество синего сукна, а у — черного, можно составить следующую систему уравнений:

х + у = 138

5х + 3у = 540

решив которую, получим, что y = 75, х = 63.

Однако современное — с помощью системы уравнений — решение этой задачи ведет к потере ее внутренней логики. Петин отец, отставной губернский секретарь Удодов, продемонстрировал другое решение:

«И без алгебры решить можно,— говорит Удодов, протягивая руку к счетам и вздыхая.— Вот, извольте видеть…» Он щелкает на счетах, и у него получается 75 и 63, что и нужно было.

Это «щелканье на счетах» состояло в выполнении шести простейших арифметических действий.

Предположим, что все купленное сукно было синее. Тогда партия в 138 аршин стоила бы 5 * 138 = 690 рублей. Но это на 690—540 = 150 рублей больше того, что было заплачено в действительности. «Перерасход» в 150 рублей указывает на то, что в партии имелось более дешевое, черное, сукно — по 3 рубля за аршин. Этого сукна столько, что из двухрублевой разницы (5 — 3 = 2 рубля) получается 150 «лишних» рублей. То есть, 150 / 2 = 75 аршин черного сукна. Отсюда 138 — 75 = 63 аршин сукна синего.

На счетах данная задача решается следующим образом:

Прежде всего Удодов-старший «набирает» число 138: одна косточка на первой проволоке, три — на второй, восемь — на третьей. Затем он «умножает» 138 на 10 (мысленно переносит все косточки одним рядом выше) и «делит» на 2: на третьей проволоке, где отложено восемь косточек, откидывает четыре косточки; на средней проволоке из трех косточек откидывает одну, а оставшуюся мысленно заменяет десятью нижними и делит пополам, то есть добавляет пять косточек к тем, что находятся на следующей проволоке; на верхней проволоке убирает одну косточку, прибавляя пять к косточкам на второй проволоке. В результате на верхней проволоке косточек нет, на второй осталось шесть, на третьей — девять. Итого — 690. Далее Удодову-старшему нужно из 690 «вычесть» 540: со второй проволоки убирается пять косточек, с третьей — четыре. Остается 150. Теперь 150 нужно «поделить» пополам (см. выше) — получается 75. Затем из 138 нужно «вычесть» 75 (см. выше) — получается 63.

***

Я.Перельман пишет: "Запад не знал и не знает Счетов, - вы не найдете их ни в одном магазине Европы. Быть может, потому-то мы и не ценим этого счетного прибора так высоко, как он заслуживает, смотрим на него, как на какую-то наивную кустарную самодельщину в области счетных приборов.

Между тем, мы вправе были бы гордиться нашими конторскими счетами, так как при изумительной простоте устройства они, по достигаемым на них результатам вплоть до конца 20-го века могли соперничать даже со сложными и дорогостоящими счетными машинами западных стран. В умелых руках этот нехитрый прибор делает порою настоящие чудеса, Иностранцы, впервые знакомящиеся с нашими счетами, охотно признают это и ценят их выше, нежели мы сами. Специалист, заведывавший одной из крупных русских фирм по продаже счетных машин, рассказывал мне, что ему не раз приходилось изумлять русскими счетами иностранцев, привозивших в контору образцы сложных счетных механизмов. Он устраивал состязания между двумя счетчиками, из которых один работал на дорогой заграничной «аддиционной» машине (т. е. машине для сложения), другой же пользовался обыкновенными счетами. И случалось, что последний, - правда, большой мастер своего дела, - брал верх над обладателем заморской диковинки в быстроте и точности вычислений. Бывало и так, что иностранец, пораженный быстротой работы на счетах, сразу же сдавался и складывал свою машину обратно в чемодан, не надеясь продать в России ни одного экземпляра.

- К чему вам дорогие счетные машины, если вы так искусно считаете при помощи ваших дешевых счетов! - говорили нередко представители иностранных фирм."

Другие интересные вещи можно прочитать у Перельмана в "занимательной арифметике"

pivopotam.livejournal.com

Счёты - это... Что такое Счёты?

Простые счёты

Счёты (русские счёты) — простое механическое устройство для произведения арифметических расчётов, усовершенствованный аналог римского абака, являются одним из первых вычислительных устройств. Счёты представляют собой раму с нанизанными на спицы костяшками, обычно по 10 штук.[1]

Счёты в XX веке часто использовали в магазинах, в бухгалтерском деле, для арифметических расчётов. С развитием прогресса их заменили электронные калькуляторы.

Железный прут в счётах, на котором находятся всего 4 костяшки, использовался для расчётов в полушках. 1 полушка была равна половине деньги, то есть четверти копейки, соответственно, четыре костяшки составляли одну копейку[2]. Также этот прут использовался для перевода фунтов в пуды (1 пуд = 40 фунтов). Также этот прут может служить разделителем целой и дробной частей набранного на счётах числа, и в вычислениях не использоваться.

Способ счёта

Каждый ряд костяшек представляет собой числовой разряд, причём вверх от прута с четырьмя костяшками разряд возрастает от единиц до сотен тысяч, а вниз — уменьшается от десятых до тысячных. Максимальное значение для каждого ряда — десять, умноженное на вес разряда (для разряда единиц максимальное значение — 10, если все костяшки отложены влево, для десятков — 100 и так далее). «Набор» числа осуществляется сдвиганием костяшек из правого края прута в левый. Таким образом, максимальное число, которое можно набрать на счётах с семью рядами целых чисел, составляет 11`111`111,110.

После добавления к девяти костяшкам одного разряда десятой костяшки производится операция записи единицы переноса в следующий разряд, состоящая из трёх действий:

  1. сдвигом влево одной костяшки к девяти костяшкам добавляется десятая костяшка;
  2. сдвигом вправо всех десяти костяшек предыдущий разряд обнуляется;
  3. сдвигом влево одной костяшки в следующий разряд записывается единица переноса.

Выполнением этого правила исключается любое неоднозначное представление чисел. С точки зрения теории систем счисления для действий в показательной единично кодированной десятичной позиционной системе счисления достаточно девяти костяшек, о чём пишет и Я. И. Перельман[3], при этом операция записи единицы переноса производилась бы за два действия вместо трёх действий:

  1. сдвигом влево одной костяшки в следующий разряд записывается единица переноса;
  2. сдвигом вправо девяти костяшек предыдущий разряд обнуляется;

но для удобства счета в русских счётах было выбрано число костяшек равное десяти, что соответствует единичнокодированной одиннадцатиричной системе счисления.

Пример счёта

Известный пример использования счётов для решения задач приводится в рассказе Антона Чехова «Репетитор».[4]

Гимназист-репетитор Егор Алексеич Зиберов задал малолетнему Пете Удодову задачу:

Купец купил 138 аршин чёрного и синего сукна за 540 рублей. Спрашивается, сколько аршин купил он того и другого, если синее стоило 5 рублей за аршин, а чёрное — 3 рубля.

Петя не смог решить её. Впрочем, и сам репетитор не справился, хотя знал, что «задача, собственно говоря, алгебраическая» и «ее с иксом и игреком решить можно». Действительно, если предположить, что х — это количество синего сукна, а у — чёрного, можно составить следующую систему уравнений:

х + у = 138

5х + 3у = 540

решив которую, получим, что y = 75, х = 63.

Однако современное — с помощью системы уравнений — решение этой задачи ведет к потере её внутренней логики. Петин отец, отставной губернский секретарь Удодов, продемонстрировал другое решение:

«И без алгебры решить можно,— говорит Удодов, протягивая руку к счетам и вздыхая.— Вот, извольте видеть…» Он щелкает на счетах, и у него получается 75 и 63, что и нужно было.

Это «щелканье на счетах» состояло в выполнении шести простейших арифметических действий.

Предположим, что все купленное сукно было синее. Тогда партия в 138 аршин стоила бы 5 * 138 = 690 рублей. Но это на 690—540 = 150 рублей больше того, что было заплачено в действительности. «Перерасход» в 150 рублей указывает на то, что в партии имелось более дешевое, чёрное, сукно — по 3 рубля за аршин. Этого сукна столько, что из двухрублевой разницы (5 — 3 = 2 рубля) получается 150 «лишних» рублей. То есть, 150 / 2 = 75 аршин чёрного сукна. Отсюда 138 — 75 = 63 аршин сукна синего.

На счетах данная задача решается следующим образом:

Прежде всего Удодов-старший «набирает» число 138: одна косточка на первой проволоке, три — на второй, восемь — на третьей. Затем он «умножает» 138 на 10 (мысленно переносит все косточки одним рядом выше) и «делит» на 2: на третьей проволоке, где отложено восемь косточек, откидывает четыре косточки; на средней проволоке из трех косточек откидывает одну, а оставшуюся мысленно заменяет десятью нижними и делит пополам, то есть добавляет пять косточек к тем, что находятся на следующей проволоке; на верхней проволоке убирает одну косточку, прибавляя пять к косточкам на второй проволоке. В результате на верхней проволоке косточек нет, на второй осталось шесть, на третьей — девять. Итого — 690. Далее Удодову-старшему нужно из 690 «вычесть» 540: со второй проволоки убирается пять косточек, с третьей — четыре. Остается 150. Теперь 150 нужно «поделить» пополам (см. выше) — получается 75. Затем из 138 нужно «вычесть» 75 (см. выше) — получается 63.

См. также

Литература

Примечания

dic.academic.ru

Кто придумал СЧЁТЫ? Когда появились первые? |

Кто придумал СЧЁТЫ? Когда появились первые?

  • это ещё в вавилоне придумали
  • Счеты являются первым простейшим приспособлением для вычислений счета. Они прошли длительный путь эволюции, в котором можно выделить четыре стадии. Первая предваряет их возникновение-это счет с помощью косточек, очень близкий к западноевропейскому счету на линиях. Вторая — “дощаной счет”. Она начинается в конце 16 века и завершается в начале 18 века. На этой стадии изобретаются русские счеты, по форме сильно отличающиеся от современных. Счеты с четырьмя полями (середина 17 века) Они имели сначала четыре, а затем два счетных поля и были универсальным счетным прибором. Десятичная позиционная система счисления еще только начинала распространяться в России, и практически все вычисления производились на счетах. Следующая, третья стадия охватывает 18-ый и начало 19-го века. В начале этой стадии счеты приобретают свою классическую форму и в дальнейшем совершенствуются только внешне, с точки зрения удобства пользования. Однако на этой стадии счеты уже не являются универсальным счетным прибором, они превращаются во вспомогательный прибор, а ведущее место занимают вычисления на бумаге. Четвертая стадия развития русских счетов охватывает начало 19 – начало 20 века. Растущая потребность в механизации вычислений породила многочисленные попытки модернизировать счеты и снова придать им характер универсального счетного прибора. Однако эта идея была в принципе несостоятельной: счеты как сугубо ручной прибор не могли конкурировать при выполнении умножения и деления с развитыми конструкциями механических арифмометров. Русские счеты, приобретя свою классическую форму, вплоть до 70-х годов 20 века оставались наиболее массовым вспомогательным вычислительным прибором. Начиная с 70-х годов с ними успешно конкурируют карманные электронные калькуляторы, хотя счеты распространены и в наше время.
  • Счеты появились в Древней Греции в 18 веке. Назывались они Абак.
  • Моя бабушка! Помню на стебелек наденет землянички — и мне протягивает — на, Считай!!) ) Не посчитаешь — не даст съесть! Вот такие лесные счеты!))
  • Насколько я помню. Это арабская штучка. В оригинале — абук.. . (abacus), кажется.. . около 2-2,5 тыс. лет назад
  • Греки и римляне производили вычисления с помощью специальной счетной доски — абака. Доска абака была разделена на полоски. Каждая полоска назначалась для откладывания тех или иных разрядов чисел: в первую полоску ставили столько камешков или бобов, сколько в числе единиц, во вторую полоску — сколько в нем десятков, в третью — сколько сотен, и так далее. На рисунке показано число 510 742. Так как у римлян камешек называли калькулюс (сравните с русским словом «галька»), то счет на абаке получил название калькуляция. И сейчас подсчет расходов называют калькуляцией, а человека, выполняющего этот подсчет — калькулятором. Но после того как два десятка лет тому назад были сделаны маленькие приборы, выполняющие за считанные секунды сложные расчеты, название «калькулятор» перешло к ним. Один и тот же камешек на абаке мог означать и единицы, и десятки, и сотни, и тысячи — все дело лишь в том, на какой полоске он лежал. Чаще всего абаком пользовались для денежных расчетов. В Древней Греции бытовала шутка: «Придворный похож на камешек для абака: захочет счетчик, цена ему будет целый талант, а захочет — только хальк». Наши счеты представляют собой также абак, в котором место полосок занимают проволоки для единиц, десятков и т. д. А у китайцев на каждой проволоке не по десять шариков, как в наших счетах, а по семь. Последние два шарика отделены от первых, и каждый из них обозначает пять. Когда при расчетах набирается пять шариков, вместо них откладывают один шарик второго отделения счетов. Такое устройство китайских счетов уменьшает необходимое число шариков. Абак (от греч. abax — доска) , доска, разделенная на полосы, где передвигались камешки, кости (как в русских счетах) , служившая для арифметических вычислений с древнейших времен до 18 века. Абак служил не столько для облегчения собственно вычислений, сколько для запоминания промежуточных результатов. Известны разновидности абака: собственно абак (греческий или египетский) в виде дощечки, на которой проводили линии или выдалбливали желобки, в которые колонки клали камешки; китайский суан-пан и японский соробан с шариками, нанизанными на прутики. Русский абак — счеты — появились приблизительно в 16 или 17 веке. Они использовали десятичную, а не пятеричную систему счисления, как остальные абаки. Основная заслуга изобретателей абака — создание позиционной системы представления чисел. История развития науки и техники Счет на абаке сменил более древний счет на пальцах. Древние египтяне полагали, что в загробном миру душу умершего подвергают экзамену по счету на пальцах. А в одной из древнегреческих комедий герой говорит, что предпочитает вычислять причитающиеся с него налоги по-старинному, на пальцах. Вероятно, счет на абаке казался ему слишком трудным. Приверженцы старого метода стали его совершенствовать. Они научились даже умножать на пальцах однозначные числа от 6 до 9. Для этого на одной руке вытягивали столько пальцев, на сколько первый множитель превосходит число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. Потом бралось число вытянутых пальцев и умножалось на 10, далее перемножались числа, показывавшие, сколько загнуто пальцев на руках. К числу вытянутых пальцев, умноженному на 10, добавлялось полученное произведение. В дальнейшем пальцевой счет был усовершенствован, и с помощью пальцев научились показывать числа до 10 000. А китайские купцы торговались, взяв друг друга за руки и указывая цену нажатием на определенные суставы пальцев.
Внимание, только СЕГОДНЯ!

goxi.ru

Счеты: история возникновения

Первыми приспособлениями для вычислений были, вероятно, всем известные счетные палочки, которые и сегодня используются в начальных классах многих школ. Постепенно из простейших приспособлений для счёта рождались всё более и более сложные устройства: абак, логарифмическая линейка, механический арифмометр, электронный компьютер.

Возникновение счета

Способности человека к счету проявились уже в эпохе палеолита. С течением времени они развивались и усложнялись, поэтому людям потребовалась помощь специальных устройств. Самым очевидным и доступным «приспособлением» стали пальцы.

Может быть кому-то этот метод покажется примитивным, но это не так. Различные загибы пальцев использовались для обозначения десятков, сотен, тысяч и даже миллиона. Данный способ оказал большое влияние на развитие математики, породив десятеричную систему счисления, а также цифры, которыми пользовались древние вавилоняне и римляне. Вплоть до средних веков «пальцевый счет» широко применяли торговцы и математики, которые умели с его помощью даже умножать. Показательно, что до сих пор люди инстинктивно демонстрируют пальцы для наглядного подтверждения счета.

Бирочный счет

Промежуточным звеном между бирками, счетными узлами и подсчетами путем перекладывания предметов, можно считать четки.

Большие возможности для усложнения вычислительных операций сулила фиксация расчетов при помощи различных предметов: бирок из кости и дерева с насечками, веревок с узелками и мелких предметов, типа зерен или камешков. Разные виды счетных бирок, например, вычислительные, долговые и пастушеские, появились еще в палеолите. Последние два просуществовали вплоть до XX века, например, в Эстонии, Югославии и Швейцарии. А вот вычислять с их помощью было все же не очень удобно. Кстати, на Руси счетная бирка называлась «нос».

Система узлов

Счет с помощью узелков на веревках появился позднее бирочного. В разное время у многих народов они считались священными и даже признавались судебным доказательством. Человек, который вносил изменения в «узелковую» запись, не имея на то полномочий, жестоко карался. Со временем системы узлов стали применяться не только для счета, но и для хранения информации другого рода. Широкую известность приобрели перуанские узелковые таблицы под названием «квипу», содержавшие торговые и учетные записи, и даже исторические хроники.

Переходный этап

Промежуточным звеном между бирками, счетными узлами и подсчетами путем перекладывания предметов, можно считать четки. Они представляли собой палочку или шнурок с нанизанными косточками, раковинами или кусочками дерева. Эти предметы могли свободно перемещаться по основанию и меняли свое значение в зависимости от цвета и порядка расположения. По смыслу данный способ довольно близок к счету с помощью перекладывания предметов, который известен еще с эпохи мезолита. От него, в свою очередь, оставался всего один шаг од изобретения абака – счетной доски. Однако чтобы сделать этот шаг, человечеству понадобились тысячелетия.

Дата публикации: 05 Октября 2012, 17:35

www.raschet.ru