История возникновения физики. Физики древнего мира
Физика в эпоху античности
Эпоха эллинизма характеризовалась наибольшим вкладом в развитие физики со стороны механики. Потребности в создании различного рода технических устройств (строительных, военных и т.д.) выдвигали на первый план вопросы статики. Архимед, создав теорию рычага, заложил основы статики. Строительная и военная техника основывалась на рычаге, позволявшем перемещать в пространстве тела большого веса при относительно небольших усилиях. Проблема рычага явилась обобщением эмпирически освоенных приемов его использования в разных областях деятельности. В своих трудах "О равновесии плоских тел и центрах тяжести плоских фигур" и не дошедшим до нас "О весах" Архимед изложил основные постулаты теории рычага:-Равные тяжести на равных длинах уравновешиваются, на неравных же длинах не уравновешиваются, но перевешивает тяжесть на большей длине.-Если при равновесии тяжестей на каких-нибудь длинах к одной из тяжестей будет что-то прибавлено, то они не будут уравновешиваться, но перевесит та тяжесть, к которой было прибавлено.-Точно так же, если от одной из тяжестей будет отнято что-нибудь, то они не будут уравновешиваться, но перевесит та тяжесть, от которой не было отнято.-Если две величины уравновешиваются на каких-нибудь длинах, то на тех же самых длинах будут уравновешиваться и равные им. Исходя из этих, многократно проверенных на практике, постулатов, Архимед формулирует закон рычага в виде следующих теорем:- Соизмеримые величины уравновешиваются на длинах, обратно пропорциональных тяжестям.- Если величины несоизмеримы, то они точно так же уравновесятся на рычагах, которые обратно пропорциональны этим величинам. Дав определение центру тяжести тела как расположенной внутри его точки, при подвешивании за которую оно останется в покое и сохранит первоначальное положение, Архимед определил центры тяжести треугольника, параллелограмма, трапеции и других фигур. Архимед явился также основоположником и гидростатики, законов плавающих тел. Этому был посвящен его труд "О плавающих телах". Гидростатика использовалась при определении плотности тел путем взвешивания их в воде и при определении грузоподъемности корабля. Логическая схема обоснования законов гидростатики отличалась от схемы обоснования закона рычага. Вначале Архимед формулирует предположение о внутренней структуре жидкости, а затем формулирует ряд теоретических следствий, вытекающих из данного предположения. Архимед исходит из того, что поверхность всякой неподвижно установившейся жидкости будет иметь форму шара, центр которого совпадает с центром Земли, и что жидкость по своей природе такова, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из ее частиц сдавливается жидкостью, находящейся над ней по отвесу, если только жидкость не заключена в каком-нибудь сосуде и не сдавливается еще чем-то другим. Следствия из этой гипотезы, выводимые математически, таковы:- Тело, равнотяжелое с жидкостью, будучи опущено в эту жидкость, погружается так, что никакая их часть не выступает над поверхностью жидкости, и не будет двигаться вниз.- Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, не погружается целиком и некоторая его часть остается над поверхностью жидкости.- Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, погружается настолько, чтобы объем жидкости, соответствующий погруженной части тела, имел вес, равный весу всего тела.- Тело, более легкое, чем жидкость, опущенное в эту жидкость силою, будет выталкиваться вверх с силой, равной тому весу, на который жидкость, имеющая равный объем с телом, будет тяжелее этого тела.- Тело, более тяжелое, чем жидкость, опущенное в эту жидкость, будет погружаться, пока не дойдет до самого низа, и в жидкости станет легче на величину веса жидкости в объеме, равном объему погруженного тела. В более кратком виде закон Архимеда формулируется в следующем виде: на всякое тело, погруженное в жидкость, действует выталкивающая сила, направленная вверх и равная весу вытесненной им жидкости. Данный закон оказался справедливым и для газа. Одним из первых случаев практического применения данного закона была проверка состава короны, изготовленной для сиракузского царя Гиерона. На основе того, что короной вытеснялось большее количество воды, чем золотым слитком Архимед установил, что корона состоит не из чистого золота, а из сплава.
30school.ru
Физика. - История физики
Введение
Рост физики не только оказывал воздействие на идеи о материальном мире, математике и философии, но также и преобразовывал человеческое общество, путем совершенствования его технологий, в целом. Физика — это не только знания, но и, что даже скорее больше, практический опыт. Научная революция, начавшаяся в XVI веке, является удобной границей между древней мыслью и классической физикой. Год 1900 — начало более современной физики. Появились новые вопросы, которые и сегодня ещё очень далеки от своего завершения.
Альберт Эйнштейн
В начале XX века физика столкнулась с серьёзными проблемами. Начали возникать противоречия между старыми моделями и эмпирическим опытом. Так, например, наблюдались противоречия между классической механикой и электродинамикой при попытках измерить скорость света. Выяснилось, что она не зависит от системы отсчёта. Физика того времени также была неспособна описать некоторые микроэффекты, такие как атомные спектра излучений, фотоэффект, эффект Комптона, энергетическое равновесие электромагнитного излучения и вещества. Таким образом, была необходима новая физика.
Основным ударом по старой парадигме стали две теории: это теория относительности Эйнштейна и Квантовая физика. Общая теория относительности была создана в 1916 году, и она позволила связать в одних уравнениях гравитационную и инертную массы. Необходимость во второй физической революции появилась в связи с открытием микромира элементарных частиц, а также многих явлений, происходящих с ними.
Ко второй половине XX века в в физике сложилось представление, что все взаимодействия физической природы можно свести к всего лишь четырём типам взаимодействия:
гравитация
электромагнетизм
сильное взаимодействие
слабое взаимодействие
В последнюю декаду XX века накопились астрономические данные, подтверждающие существование космологической постоянной, тёмной материи и тёмной энергии. Идут поиски общей теории поля — теории всего, которая описала бы все фундаментальные взаимодействия обобщённым физико-математическим образом. Одним из серьёзных кандидатов на эту роль является М-теория, которая, в свою очередь, — недавнее развитие теории суперструн.
Всё больше проблем связано с эволюцией Вселенной, с её ранними этапами, с природой вакуума, и, наконец, с окончательной природой свойств податомных частиц. Частичные теории являются в настоящее время лучшими, что физика может предложить в настоящее время. См. также Последние достижения в физике.
Список неразрешенных проблем в физике постоянно множится; однако,
«Мы больше атома, но, кажется, уже знаем о нём все.» — Ричард Фейнман
Ранняя физика
По природе своей, человек — существо любопытное. Ещё с древних пор его начали интересовать вещи, казавшиеся ранее обыденными, относящиеся к окружающему миру. Тогда давно основной причиной этого любопытства, скорее всего, был страх. И лишь немногих это интересовало из чистого любопытства, любопытства ради любопытства.
Действительно, почему, например, происходит притяжение, почему разные материалы имеют разные свойства? Ну почему же солнце заходит с одной стороны, а восходит с другой?! Люди всегда интересовались миром. Многие свойства природы приписывались богам. Неправильные теории приобретали свойства религии. Их передавали из поколения в поколения. Многие теории того времени были в значительной степени изложены в форме философских строк. Мало было людей, готовых в них сомневаться. Тем более на том этапе развития наличие любой теории или отсутствие таковой большого влияния на жизнь не оказывало.
Античная физика
Средств для проверки теорий и выяснения вопроса, какая из них верна, в древности было крайне мало, даже если речь шла о земных каждодневных явлениях. Единственная физическая величина, которую умели тогда достаточно точно измерять — длина; позже к ней добавился угол. Эталоном времени служили сутки, которые в Древнем Египте делили не на 24 часа, а на 12 дневных и 12 ночных, так что было два разных часа, и в разные сезоны продолжительность часа была разной. Но даже когда установили привычные нам единицы времени, из-за отсутствия точных часов большинство физических экспериментов были просто невозможно провести. Поэтому естественно, что вместо научных школ возникали полурелигиозные учения.
Преобладала геоцентрическая система мира, хотя пифагорейцы развивали и пироцентрическую, в которой звёзды, Солнце, Луна и шесть планет обращаются вокруг Центрального Огня. Чтобы всего получилось священное число небесных сфер (десять), шестой планетой объявили Противоземлю. Впрочем, отдельные пифагорейцы (Аристарх Самосский и др.) создали гелиоцентрическую систему. У пифагорейцев возникло впервые и понятие эфира как всеобщего заполнителя пустоты.
Первую формулировку закона сохранения материи предложил Эмпедокл в V веке до н. э.:
Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.
Позже аналогичный тезис высказывали Демокрит, Аристотель и другие..
Термин «Физика» возник как название одного из сочинений Аристотеля. Предметом этой науки, по мнению автора, было выяснение первопричин явлений:
Так как научное знание возникает при всех исследованиях, которые простираются на начала, причины или элементы путём их познания (ведь мы тогда уверены в познании всякой вещи, когда узнаём её первые причины, первые начала и разлагаем её впредь до элементов), то ясно, что и в науке о природе надо определить прежде всего то, что относится к началам.
Такой подход долго (фактически до Ньютона) отдавал приоритет метафизическим фантазиям перед опытным исследованием. В частности, Аристотель и его последователи утверждали, что движение тела поддерживается приложенной к нему силой, и при ее отсутствии тело остановится (по Ньютону, тело сохраняет свою скорость, а действующая сила меняет ее значение и/или направление).
Некоторые античные школы предложили учение об атомах как первооснове материи. Эпикур даже полагал, что свобода воли человека вызвана тем, что движение атомов подвержено случайным смещениям.
Кроме математики, эллины успешно развивали оптику. У Герона Александрийского встречается первый вариационный принцип «наименьшего времени» для отражения света. Тем не менее в оптике древних были и грубые ошибки. Например, угол преломления считался пропорциональным углу падения (эту ошибку разделял даже Кеплер). Гипотезы о природе света и цветности были многочисленны и довольны нелепы.
Индийский вклад
Таблица механики, 1728 Cyclopaedia.
В позднюю Vedic эру (c IX по VI в. до н.э), астроном Яджнаволкья (Yajnavalkya), в своей Shatapatha Brahmana, упомянуто раннее понятие гелиоцентр (heliocentrism), в котором Земля была круглой, и Солнце являлось «центром сфер». Он измерил растояния от Луны и Солнца до Земли в 108 диаметров самих объектов. Эти значения практически совпадают с современными: для Луны — 110.6, и для Солнца — 107.6.
Индусы представляли мир состоящим из пяти основных элементов: земля, огонь, воздух, вода и эфир/пространство. Позже, с VII в. до н.э, они сформулировали теорию атома, начиная с Kanada и Pakudha Katyayana. Поклонники теории полагали, что атом состоит из элементов, до 9 элементов в каждом атоме, каждый элемент имеет до 24 свойств. Они развивали следующие теории, о том как атомы могут объединяться, реагировать, вибрировать, перемещаться и выполнять другие действия. Также разрабатывались теории того, как атомы могут сформировать двойные молекулы, которые объединяются далее, чтобы сформировать ещё большие молекулы, и как частицы сначала объединяются в пары, и затем группа в трио пар, которые являются наименьшими видимыми единицами материи. Эти схождения с современными атомными теориями потрясают воображение. Ещё у индусов атомы были делимыми частицами, до чего мы догадались лишь в 30-х годах ХХ века, и что положило начало всей ядерной энергетике.
Принцип относительности (чтобы не перепутать с теорией относительности Эйнштейна) был доступен в зачаточной форме с VI в. до н.э в древнем индийском философском понятии «sapekshavad», буквально «теория относительности» на Санскрите.
Две школы, Samkhya и Vaisheshika, развивали теории света с VI—V в. до н. э. Согласно школе Samkhya, свет — один из пяти фундаментальных элементов, из которых позже появляются более тяжелые элементы. Школа Vaisheshika определила движение в терминах немгновенного движения физических атомов. Лучи света считались потоком высоких скоростных атомов огня, которые могут проявлять различные особенности в зависимости от скорости и мер этих частиц. [2] Буддисты Дигнга (V в.) и Dharmakirti (VII в.) развивали теорию света, состоящего из частиц энергии, подобных современному понятию фотонов.
Почетный австралийский специалист по индийской культуре (indologist) A. L. Basham заключил, что «они были блестящими образными объяснениями физической структуры мира, и в основном, согласились с открытиями современной физики.»
В 499 году астроном-математик Арьябхата (Aryabhata) представлял на обсуждение детальную модель гелиоцентрической солнечной системы тяготения, где планеты вращаются вокруг своей оси (сменяя таким образом день и ночь) и имеют эллиптическую орбиту (приобретая таким образом зиму и лето). Удивительно, что в такой системе луна не являлась источником света, а только отражала солнечный свет от своей поверхности. Арьябхата также правильно объяснил причины солнечных и лунных затмений и предсказал их времена, дал радиусы планетарных орбит вокруг Солнца, и точно измерил длины дня, звездного года, и диаметра Земли. Его объяснение затмений и намёки на вращение Земли вызвало негодование правоверных индуистов, к которым присоединился даже просвещённый Брахмагупта:
Последователи Ариабхаты говорят, что Земля движется, а небо покоится. Но в их опровержение было сказано, что если бы это было так, то камни и деревья упали бы с Земли… Среди людей есть такие, которые думают, что затмения вызываются не Головой [дракона Раху]. Это абсурдное мнение, ибо это она вызывает затмения, и большинство жителей мира говорят, что именно она вызывает их. В Ведах, которые есть Слово Божие, из уст Брахмы говорится, что Голова вызывает затмения. Напротив того, Ариабхата, идя наперекор всем, из вражды к упомянутым священным словам утверждает, что затмение вызывается не Головой, а только Луной и тенью Земли… Эти авторы должны подчиниться большинству, ибо всё, что есть в Ведах — священно.
Брахмагупта, в его Brahma Sputa Siddhanta в 628 году представляет гравитацию как силу притяжения и показывает закон притяжения.
Индийско-арабские цифры стали ещё одним важнейшим вкладом индусов в науку. Современная позиционная система счисления (индусско-арабская система цифр) и ноль была сначала развита в Индии, наряду с тригонометрическими функциями синуса и косинуса. Эти математические достижения, наряду с индийскими достижения в физике, были приняты Исламским Халифатом, после чего и начали распространяться по Европе и другим частям света.
Китайский вклад
В XII веке до н. э., в Китае был изобретен первый редукционный механизм, the South Pointing Chariot, это было также первым использованием дифференциальной передачи.
Китаец «Мо Чинг» в III веке до н. э. стал автором ранней версии закона движения Ньютона.
«Прекращение движения происходит из-за противодействующей силы… Если не будет никакой противостоящей силы …, то движение никогда не закончится. Это верно настолько же, как и то, что бык не лошадь.»
Более поздние вклады Китая включают изобретения бумаги, печатного дела, пороха, и компаса. Китайцы первыми «открыли» отрицательные числа, которые оказали сильное влияние на развитие физики и математики.
Данные в этой статье приведены по состоянию на начало XX века.
Вы можете помочь, обновив информацию в статье.
Средневековая Европа
XIII век: изобретены очки, правильно объяснено явление радуги, освоен компас.
XVI век: Николай Коперник предложил гелиоцентрическую систему мира.
Симон Стевин в книгах «Десятая» (1585), «Начала статики» и других ввёл в обиход десятичные дроби, сформулировал (независимо от Галилея) закон давления на наклонную плоскость, правило параллелограмма сил, продвинул гидростатику и навигацию. Любопытно, что формулу равновесия на наклонной плоскости он вывел из невозможности вечного движения (которое считал аксиомой).
Иоганн Кеплер значительно продвинул оптику, в том числе физиологическую (выяснил роль хрусталика, верно описал причины близорукости и дальнозоркости), существенно доработал теорию линз. В 1609 году он издал книгу «Новая астрономия» с двумя законами движения планет; третий закон он сформулировал в более поздней в книге «Мировая гармония» (1619). Заодно он формулирует в ясном виде первый закон механики: всякое тело, на которое не действуют иные тела, находится в покое или совершает прямолинейное движение. Менее ясно формулируется закон всеобщего притяжения: сила, действующая на планеты, проистекает от Солнца и убывает по мере удаления от него, и то же верно для всех прочих небесных тел. Источником этой силы, по его мнению, является магнетизм в сочетании с вращением Солнца и планет вокруг своей оси.
В 1608 году в Голландии изобретена зрительная труба. Галилео Галилей, усовершенствовав её, строит первый телескоп и проводит исследование небесных объектов. Открывает спутники Юпитера, фазы Венеры, звёзды в составе Млечного пути и многое другое. Решительно поддерживает теорию Коперника (но столь же решительно отвергает теорию Кеплера). Формулирует основы теоретической механики — принцип относительности, закон инерции, квадратичный закон падения, даже принцип виртуальных перемещений, изобретает термометр.
Зарождение теоретической физики
XVII век. Метафизика Декарта и механика Ньютона.
Во второй половине XVII века интерес к науке в основных странах Европы резко возрос. Возникают первые Академии наук и первые научные журналы.
1600: первое экспериментальное исследование электрических и магнитных явлений проводит врач английской королевы Уильям Гильберт. Он выдвигает гипотезу, что Земля является магнитом. Именно он предложил сам термин «электричество».
1637: Рене Декарт издал «Рассуждение о методе» с приложениями «Геометрия», «Диоптрика», «Метеоры». Считал пространство материальным, а причиной движения — вихри материи, возникающие, чтобы заполнить пустоту (которую считал невозможной и поэтому не признавал атомов), или от вращения тел. В «Диоптрике» Декарт впервые дал правильный закон преломления света. Создаёт аналитическую геометрию и вводит почти современную математическую символику.
В 1644 году вышла книга Декарта «Начала философии». В ней провозглашается, что изменение состояния материи возможно только при воздействии на неё другой материи. Это сразу исключает возможность дальнодействия без ясного материального посредника. Приводится закон инерции. Второй закон взаимодействия — закон сохранения количества движения — тоже приводится, однако обесценивается тем, что чёткое определение количества движения у Декарта отсутствует.
Декарт уже видел, что движение планеты — это ускоренное движение. Вслед за Кеплером Декарт считал: планеты ведут себя так, как будто существует притяжение солнца. Для того чтобы объяснить притяжение, он сконструировал механизм Вселенной, в которой все тела приводятся в движение толчками вездесущей, но невидимой, «тонкой материи». Лишенные возможности двигаться прямолинейно, прозрачные потоки этой среды образовали в пространстве системы больших и малых вихрей. Вихри, подхватывая более крупные, видимые частицы обычного вещества, формируют круговороты небесных тел. Они вращают их и несут по орбитам. Внутри малого вихря находится и Земля. Круговращение стремиться растащить прозрачный вихрь вовне. При этом частицы вихря гонят видимые тела к Земле. По Декарту, это и есть тяготение. Система Декарта была первой попыткой механически описать происхождение и движение планетной системы.
1647: Блез Паскаль испытывает первый барометр (изобретённый Торричелли и выясняет, что давление воздуха падает с высотой. В конце века открыт закон Бойля-Мариотта.
Христиан Гюйгенс
1673: выходит книга Христиана Гюйгенса «Часы с маятником». Появление точных часов наконец-то открывает путь проведению измерений переменных величин. Гюйгенс приводит (словесно) несколько важнейших формул: для периода колебаний маятника и для центростремительного ускорения.
1687: «Начала» Ньютона. Физические концепции Ньютона находились в резком противоречии с декартовскими. Ньютон верил в атомы, считал дедукцию вторичным методом, которому должны предшествовать эксперимент и конструирование математических моделей. Ньютон заложил основы механики, оптики, теории тяготения, небесной механики, открыл и далеко продвинул математический анализ. Но его теория тяготения, в которой притяжение существовала без материального носителя и без механического объяснения, долгое время отвергалась учёными континентальной Европы (в том числе Гюйгенсом, Эйлером и др.). Только во второй половине XVIII века, после работ Клеро по теории движения Луны и кометы Галлея, критика утихла.
XVIII век. Механика, теплород, электричество.
В XVIII веке ускоренными темпами развивались механика, небесная механика, учение о теплоте. Начинается исследование электрических и магнитных явлений. Картезианство, не подтверждаемое опытом, быстро теряет сторонников.
Создание аналитической механики (Эйлер, Лагранж) завершило превращение теоретической механики в раздел математического анализа. Утверждается общее мнение, что все физические процессы — проявления механического движения вещества. Ещё Гюйгенс решительно высказывался за необходимость такого представления о природе явлений:
Истинная философия должна видеть в явлениях механических первопричину всех явлений; по моему мнению, иное представление и невозможно, если мы только не желаем потерять надежду что-либо понимать в Философии. («Трактат о свете»).
Герман фон Гельмгольц
Даже в XIX веке в первичности механики не сомневался Гельмгольц:
Конечной целью всех естественных наук является разыскание движений, лежащих в основе всех изменений, и причин, производящих эти движения, то есть слияние этих наук с механикой.
Представление о «тонких материях», переносящих тепло, электричество и магнетизм, в XVIII веке сохранилось и даже расширилось. В существования теплорода, носителя теплоты, верили многие физики, начиная с Галилея; однако другой лагерь, в который входили Декарт, Гук, Даниил Бернулли и Ломоносов, придерживался молекулярно-кинетической гипотезы.
В начале века голландец Фаренгейт изобрёл современный термометр на ртутной или спиртовой основе, и предложил шкалу Фаренгейта. До конца века появились и другие варианты: Реомюр (1730), Цельсий (1742) и другие. С этого момента открывается возможность измерения количества тепла в опытах.
1734: французский учёный Дюфе обнаружил, что существуют 2 вида электричества: положительное и отрицательное.
1745: изобретена лейденская банка. Франклин развивает гипотезу об электрической природе молнии, изобретает громоотвод. Появляются электростатическая машина, электрометр Рихмана.
1784: запатентована паровая машина Уатта. Начало широкого распространения паровых двигателей.
1780-е годы: открыт и обоснован точными опытами закон Кулона. Далее>>>
fizika.my1.ru
История возникновения физики
Опубликовано Мар 5, 2014
Физика – наука, которая изучает структуру и эволюцию мира, а также является основной и важной областью естествознания. Слово «фюзис» с греческого языка означает – природа. Основой всего естествознания и природы являются законы физики.
Уже в 4 веке Аристотель предал большое значение термину «физика». Масштабность мыслей казались самыми величественными. Казалось, что философия стала больше приближена к физике. Очень важный вопрос объединил их в одну стезю – законы возникновения и функционирования Вселенной. Правда, уже после того как наука стала больше доминировать, стали появляться отдельные подразделения физики.В русский язык эта наука зашла лишь после появления учебников физики. Автором является – М.В. Ломоносов. Вот, что касается, отечественной учебной книги, то автором стал – Страхов. Подобный маневр русского академика изменил всю систему образования того времени.
В нашем веке физику все стали рассматривать каждый по – своему. Ведь, если подумать, то отличие современного общества от того что было ранее, напрямую зависит от физических открытий. Например, исследования электромагнетизма. Подобные прорывы в науке привели к возникновению телефона. Так, если завести речь об автомобиле, то он возник благодаря термодинамике. Компьютер возник вследствие развития электроники.
Подобные процессы не стоят на месте, а лишь усовершенствуются. Новые открытия способствуют улучшению промышленности и техники. Следует задуматься о новых загадках природы, которые требуют объяснения. В этом поможет – физика.
Конечно, не смотря на то, что наука зашла слишком далеко, невозможно объяснить с первого раза все явления природы. Основы физических исследований и методов разрабатываются тщательно, исходя из накопленных знаний.
Существует: экспериментальная и теоретическая физика. Если рассмотреть экспериментальную, то теории и законы опираются только на данные после исследований.
Теоретическая физика обладает несколькими задачами. Любая теория обладает возможностью рассмотреть на экспериментах всю суть «адекватности» явлений. Любое изучение физики несет в себе возможность расшифровать формулировку разнообразных систем.
Области физики многогранны и тем самым интересны. При классической механике верным будет решение, если атомы меньше чем размеры исследуемых объектов. Важно, чтобы гравитационные силы были малы и чтобы скорость объектов была меньше скорости света.
www.kcnti.ru
2.Натурфилософия античного мира
1.Пред физ и физкартина мира.Философия и физика.Фи́зика (от др.-греч. φύσις — природа) — область естествознания. Это наука о простейших формах 1движения материи и соответствующих им общих законах природы. Наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Законы физики лежат в основе всего естествознания.
Физика — это наука о природе (естествознание) в самом общем смысле (часть природоведения). Она изучает различные субстанции бытия (материю, вещество, поля) и наиболее простые и вместе с тем наиболее общие формы её движения, а также фундаментальные взаимодействия природы, управляющие движением материи.
На предмет физики и законы физики существует 2 основные точки зрения:
1.Предмет любой науки (в т. ч. физики) находится в сфере ощущений, и задача физики - определить связи между этими ощущениями, т.е. природа, окружающий мир – это совокупность ощущений, формируемых сознанием человека.
2.Физика рассматривает связь не между ощущениями, а между реально существующими объектами и явлениями.
Предмет физики изучает природу. Не просто отдельные биологические виды или географию, а природу в самом, что ни на есть общем смысле этого слова. Физика изучает фундаментальные свойства природы. Она изучает энергии, вещества, а также их взаимодействия.
ФИЗИЧЕСКАЯ КАРТИНА МИРА - представление о мире и его процессах, выработанное физикой на основе эмпирического исследования и теоретического осмысления. Физическая картина мира следует за ходом развития науки; сначала она основывалась на механике атома (атомизм), затем – на механике сил (динамизм, энергетизм), а в наши дни – на представлении о неразрывной связи пространства и времени, а также силы и материи, на понимании совокупности условий микрофизики, статистического характера физических законов и двойственной природы материи. Физическая картина мира, развиваемая на основе этого физического учения, все сильнее теряла характер наглядности; качественные различия все более сводились к количественным. Современная физическая картина мира состоит из системы недоступных наблюдению уравнений, значение которых трудно для понимания; она не является более «картиной». Прежде всего стало совершенно абстрактным понятие материальной действительности. Но, согласно Планку, прогрессирующее удаление физической картины мира от мира чувственного означает не что иное, как увеличивающееся приближение к реальной действительности (физическому миру, трансцендентному по отношению к переживаниям).
Физика и философия
Вследствие общности и широты своих законов Ф. всегда оказывала воздействие на развитие философии и сама находилась под её влиянием. С каждым новым открытием в естественнонаучной области, по словам Ф. Энгельса, материализм неизбежно должен менять свою форму. В достижениях современной Ф. всё большее подтверждение и конкретизацию находит высшая форма материализма – диалектический материализм. При переходе к исследованию микромира закон диалектики – единство противоположностей – проявляется особенно отчётливо. Единство прерывного и непрерывного находит своё отражение в корпускулярно-волновом дуализме микрочастиц. Необходимое и случайное выступают в неразрывной связи, что выражается в вероятностном, статистическом характере законов движения микрочастиц. Провозглашаемое материализмом единство материального мира ярко проявляется во взаимных превращениях элементарных частиц – возможных форм существования физической материи.
НАТУРФИЛОСОФИЯ (лат. natura - "природа") - философия природы, умозрительное
истолкование природы, рассматриваемой в ее целостности. Границы между
натурфилософией и естествознанием, ее место в философии исторически
менялись. Наибольшую роль натурфилософия играла в древности. Натурфилософия
явилась первой исторической формой философии и фактически сливалась с
естествознанием (атомистическая гипотеза в Древней Греции). В дальнейшем
натурфилософия в основном именовалась физикой, т.е. учением о природе.
Натурфилософия возникла в античную эпоху как попытка найти «конечные причины» и фундаментальные закономерности природных явлений. Предложенные тогда и позднее натурфилософские системы включали такие важнейшие естественнонаучные понятия, как субстанция, материя, пространство, время, движение, закон природы и др. Впервые термин «philosophia naturalis» встречается у Сенеки.
Античная физика
Средств для проверки теорий и выяснения вопроса, какая из них верна, в древности было крайне мало, даже если речь шла о земных каждодневных явлениях. Единственная физическая величина, которую умели тогда достаточно точно измерять — длина; позже к ней добавился угол. Эталоном времени служили сутки, которые в Древнем Египте делили не на 24 часа, а на 12 дневных и 12 ночных, так что было два разных часа, и в разные сезоны продолжительность часа была разной. Но даже когда установили привычные нам единицы времени, из-за отсутствия точных часов большинство физических экспериментов были просто невозможно провести. Поэтому естественно, что вместо научных школ возникали полурелигиозные учения.
Преобладала геоцентрическая система мира, хотя пифагорейцы развивали и пироцентрическую, в которой звёзды, Солнце, Луна и шесть планет обращаются вокруг Центрального Огня. Чтобы всего получилось священное число небесных сфер (десять), шестой планетой объявили Противоземлю. Впрочем, отдельные пифагорейцы (Аристарх Самосский и др.) создали гелиоцентрическую систему. У пифагорейцев возникло впервые и понятие эфира как всеобщего заполнителя пустоты.Первую формулировку закона сохранения материи предложил Эмпедокл в V веке до н. э.:Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.Позже аналогичный тезис высказывали Демокрит, Аристотель и другие.Сам термин «Физика» возник как название одного из сочинений Аристотеля. Предметом этой науки, по мнению автора, было выяснение первопричин явлений:так как научное знание возникает при всех исследованиях, которые простираются на начала, причины или элементы путём их познания (ведь мы тогда уверены в познании всякой вещи, когда узнаём её первые причины, первые начала и разлагаем её впредь до элементов), то ясно, что и в науке о природе надо определить прежде всего то, что относится к началам.Некоторые античные школы предложили учение об атомах как первооснове материи. Эпикур даже полагал, что свобода воли человека вызвана тем, что движение атомов подвержено случайным смещениям.Кроме математики, эллины успешно развивали оптику. У Герона Александрийского встречается первый вариационный принцип «наименьшего времени» для отражения света. Тем не менее в оптике древних были и грубые ошибки. Гипотезы о природе света и цветности были многочисленны и довольны нелепы.Физика — это наука о материи, ее свойствах и движении. Она является одной из наиболее древних научных дисциплин. Люди пытались понять свойства материи из древнейших времен: почему тела падают на землю, почему разные вещества имеют различные свойства и т. д. Интересовали людей также вопрос о строении мира, о природе Солнца и Луны. Сначала ответы на эти вопросы пытались искать в философии. В основном философские теории, которые пытались дать ответы на такие вопросы не проверялись на практике. Однако, несмотря на то, что нередко философские теории неправильно описывали наблюдения, еще в древние времена человечество добилось значительных успехов в астрономии, а греческий мудрец Архимед даже сумел дать точные количественные формулировки многих законов механики и гидростатики. Историческое развитие физических представлений о материи и движении. Первые теоретич. представления о M. и д., ставшие впоследствии в европ. культурном регионе основой физики как фундам. науки о природе, были разработаны в рамках античных натурфилософских учений. Все эти учения трактовали материю как первоматериал, общий субстрат всех природных образований. Начав с конкретных представлений о материи как субстанциальном первоначале всех вещей [вола v Фалеса , воздух у Анаксимена, огонь у Гераклита , сохраняющем себетождественность в многообразных процессах изменения природных явлений, др.-греч. философия вскоре выработала представление о качественно неопределённой первичной материи (апейрон Анаксимандра), определ. модификациями к-рого были античные виды материи - вода, земля, воздух и огонь. Движение, рассматривавшееся как изменение вообще, первоначально трактовалось наивно-антропоморфно - как проявление одушевлённости отд. вещей и мира в целом - Космоса (гилозоизм).
Наиб, развитые философско-физ. представления о M. и д. античности, категориальные основания к-рых не утратили своего значения и по сей день, были развиты в учениях Демокрита , Платона (Пlaтwv) и Аристотеля . Демокрит всесторонне разработал атомистич. принципы учения о M. и д., согласно к-рым всё многообразие природных вещей и процессов сводилось к разл. сочетаниям и пространственным перемещениям внутреннебескачеств. непроницаемых и неделимых первоэлементов материи - атомов, различающихся между собой лишь пространственными размерами, формой и ориентацией. Материя, как состоящая в конечном счёте из атомов, имела, т. о., предел структурной делимости, а все виды движения сводились к одному - механическому.В натурфилософской части своего учения (диалог "Тимей") Платон излагает доктрину своеобразного "матом, атомизма". Четыре античных вида материи образуются у него в результате первонач. оформления бескачеств, "безвидной" первоматерии (отождествляемой с пространством, или небытием) посредством двух видов прямоугольных треугольников с соотношениями сторон из к-рых затем строятся правильные многогранники: тетраэдр - "элементарная частица" для огня, октаэдр - для воздуха, икосаэдр- для воды и куб - для земли. В. Гейзенберг (W. Heisenberg) рассматривал геом. атомизм Платона как прообраз совр. физ. представлений о симметрии В учении Аристотеля бескачеств, первоматерия, обладающая неопределённым бытием, первоначально оформляется в землю, воду, воздух и огонь путём попарных сочетаний четырёх осн. качеств - тёплого, холодного, влажного и сухого. Аристотель также выделил четыре типа движения: по сущности - возникновение и уничтожение, по кол-ву - рост и уменьшение, по качеству - превращение и по месту - перемещение, определив движение вообще как переход из возможности в действительность, и четыре типа причин, ответственных за существование отд. материальных образований (сущностей),- материальную, формальную, действующую и целевую. Он впервые ввёл в натурфилософский обиход сам термин "материя" и отделил физику как один из разделов "второй философии" от собственно философии (метафизики).
Некоторые теории древних мыслителей, как, например, идеи о атомах, которые были сформулированы в древних Греции и Индии, опережали время. Постепенно от общей философии начало отделяться естествознание, как и его часть, которая описывает окружающий мир. Одна из основных книг Аристотеля называется «Физика». Несмотря на некоторые неправильные утверждения, физика Аристотеля на протяжении веков оставалась основой знаний о природе.