Древние софизмы примеры. Open Library - открытая библиотека учебной информации
История современного города Афины.
Древние Афины
История современных Афин

1. Софизмы. Понятие, примеры. Древние софизмы примеры


1. Софизмы. Понятие, примеры. Логика: конспект лекций

1. Софизмы. Понятие, примеры

Раскрывая данный вопрос, необходимо сказать, что любой софизм является ошибкой. В логике выделяют также паралогизмы. Отличие этих двух видов ошибок состоит в том, что первая (софизм) допущена умышленно, вторая же (паралогизм) — случайно. Паралогизмами изобилует речь многих людей. Умозаключения, даже, казалось бы, правильно построенные, в конце искажаются, образуя следствие, не соответствующее действительности. Паралогизмы, несмотря на то что допускаются неумышленно, все же часто используются в своих целях. Можно назвать это подгонкой под результат. Не осознавая, что делает ошибку, человек в таком случае выводит следствие, которое соответствует его мнению, и отбрасывает все остальные версии, не рассматривая их. Принятое следствие считается истинным и никак не проверяется. Последующие аргументы также искажаются для того, чтобы больше соответствовать выдвинутому тезису. При этом, как уже было сказано выше, сам человек не сознает, что делает логическую ошибку, считает себя правым (более того, сильнее подкованным в логике).

В отличие от логической ошибки, возникающей непроизвольно и являющейся следствием невысокой логической культуры, софизм является преднамеренным нарушением логических правил. Обычно он тщательно маскируется под истинное суждение.

Допущенные умышленно, софизмы преследуют цель победить в споре любой ценой. Софизм призван сбить оппонента с его линии размышлений, запутать, втянуть в разбор ошибки, которые не относятся к рассматриваемому предмету. С этой точки зрения софизм выступает как неэтичный способ (и при этом заведомо неправильный) ведения дискуссии.

Существует множество софизмов, созданных еще в древности и сохранившихся до сегодняшнего дня. Заключение большей части из них носит курьезный характер. Например, софизм «вор» выглядит так: «Вор не желает приобрести ничего дурного; приобретение хорошего есть дело хорошее; следовательно, вор желает хорошего». Странно звучит и следующее утверждение: «Лекарство, принимаемое больным, есть добро; чем больше делать добра, тем лучше; значит, лекарство нужно принимать в больших дозах». Существуют и другие известные софизмы, например: «Сидящий встал; кто встал, тот стоит; следовательно, сидящий стоит», «Сократ — человек; человек — не то же самое, что Сократ; значит, Сократ — это нечто иное, чем Сократ», «Эти кутята твои, пес, отец их, тоже твой, и мать их, собака, тоже твоя. Значит, эти кутята твои братья и сестры, пес и сука — твои отец и мать, а сам ты собака».

Такие софизмы нередко использовались для того, чтобы ввести оппонента в заблуждение. Без такого оружия в руках, как логика, соперникам софистов в споре было нечего противопоставить, хотя зачастую они и понимали ложность софистических умозаключений. Споры в Древнем мире зачастую заканчивались драками.

При всем отрицательном значении софизмов они имели обратную и гораздо более интересную сторону. Так, именно софизмы стали причиной возникновения первых зачатков логики. Очень часто они ставят в неявной форме проблему доказательства. Именно с софизмов началось осмысление и изучение доказательства и опровержения. Поэтому можно говорить о положительном действии софизмов, т. е. о том, что они непосредственно содействовали возникновению особой науки о правильном, доказательном мышлении.

Известен также целый ряд математических софизмов. Для их получения числовые значения тасуются таким образом, чтобы из двух разных чисел получить одно. Например, утверждение, что 2 х 2 = 5, доказывается следующим образом: по очереди 4 делится на 4, а 5 на 5. Получается результат (1:1) = (1:1). Следовательно, четыре равно пяти. Таким образом, 2 х 2 = 5. Такая ошибка разрешается достаточно легко — нужно лишь произвести вычитание одного из другого, что выявит неравенство двух этих числовых значений. Также опровержение возможно записью через дробь.

Как раньше, так и теперь софизмы используются для обмана. Приведенные выше примеры достаточно просты, легко заметить их ложность и не обладая высокой логической культурой. Однако существуют софизмы завуалированные, замаскированные так, что отличить их от истинных суждений бывает очень проблематично. Это делает их удобным средством обмана в руках подкованных в логическом плане мошенников.

Вот еще несколько примеров софизмов: «Для того чтобы видеть, нет необходимости иметь глаза, так как без правого глаза мы видим, без левого тоже видим; кроме правого и левого, других глаз у нас нет, поэтому ясно, что глаза не являются необходимыми для зрения» и «Что ты не терял, то имеешь; рога ты не терял, значит, у тебя рога». Последний софизм является одним из самых известных и часто приводится в качестве примера.

Можно сказать, что софизмы вызываются недостаточной самокритичностью ума, когда человек хочет понять пока недоступное, не поддающееся на данном уровне развития знание.

Бывает и так, что софизм возникает как защитная реакция при превосходящем противнике, в силу неосведомленности, невежества, когда спорящий не проявляет упорство, не желая сдавать позиций. Можно говорить о том, что софизм мешает ведению спора, однако такую помеху не стоит относить к значительным. При должном умении софизм легко опровергается, хотя при этом и происходит отход от темы рассуждения: приходится говорить о правилах и принципах логики.

Поделитесь на страничке

Следующая глава >

fil.wikireading.ru

Софизмы: примеры с ответами

19 января 2018

Идея софизмов зародилась еще во времена Древней Греции, постепенно распространившись и в Рим. Мудрецов специально обучали тому, чтобы доказывать какое-либо мнение с помощью заведомо ложных аргументов. Но эти доказательства выглядели очень правдоподобными.

Софизмы и их решения

Отличие софизма от паралогизма

Прежде чем рассмотреть конкретные примеры софизмов, необходимо отметить: любой из них представляет собой ошибку. Помимо этих философских уловок, также в логике существует и такое понятие, как паралогизм. Отличие его от софизма заключается в том, что паралогизм допускается случайно, в то время как софизм – это намеренная ошибка. Речь многих людей практически изобилует паралогизмами. Если даже умозаключение построено согласно всем законам логики, то в самом конце оно может быть искажено и уже не соответствовать реальной действительности. Хотя паралогизмы и допускаются без злого умысла, они могут все равно использоваться в личных целях – иногда такой подход называется подгонкой под результат.

Интересные софизмы

Интересные примеры софизмов

В отличие от паралогизма, софизм представляет собой намеренное нарушение законов логики. При этом софизмы тщательнейшим образом маскируются под истинные умозаключения. Есть немало подобных примеров, которые сохранились с древности до наших дней. И заключение большей части из этих уловок носит достаточно курьезный оттенок. Например, таким образом выглядит софизм о воре: «Вор не испытывает желания воровать что-то дурное; приобретение чего-либо хорошего – благое дело; стало быть, вор занимается благим делом». Забавно звучит и такое утверждение: «Лекарство, которое нужно принимать больному, – это добро; чем больше добра, тем лучше; стало быть, лекарства нужно пить как можно больше».

Еще один интересный пример софизма – это знаменитое умозаключение о Сократе: «Сократ является человеком; понятие «человек» – это не то же самое, что понятие «Сократ»; стало быть, Сократ представляет собой нечто иное, нежели Сократ». Подобные софизмы нередко применялись в Древнем Риме для того, чтобы ввести в заблуждение своего оппонента. Не будучи вооруженными логикой, собеседники софистов совершенно ничего не могли противопоставить этим уловкам, хотя вся нелепость их была очевидна. Нередко споры в Древнем Риме заканчивались кровавыми драками.

Решение софизма

Польза философских уловок

Несмотря на свое отрицательное значение, многочисленные примеры софизмов в философии имели и свою положительную сторону. Эти уловки способствовали развитию логики, поскольку они в неявной форме содержали в себе проблему доказательства. Именно с ними философы начали осмыслять проблему доказательства утверждения и его опровержения. Поэтому можно смело утверждать, что софизмы могут нести пользу, так как содействуют правильному, логически выверенному мышлению.

Уловки из математики

Немало известно и примеров математических софизмов. Для их получения уже неизвестные нам авторы подтасовывали значения чисел так, чтобы получить нужный результат. К примеру, можно доказать, что 2 х 2 = 5. Делается это таким образом: 4 делится на 4, а 5 – на 5. Стало быть, результат выходит таким: 1 / 1 = 1 / 1. А значит, 4 = 5, а 2 х 2 = 5. Разрешить этот пример софизма в математике очень просто – необходимо вычесть два разных числа, затем выявить неравенство этих двух чисел.

С софистами всегда нужно было держать ухо востро. Среди них было немало мудрых философов. Они мастерски владели искусством спора и придумали такие мыслительные уловки, которые и по сей день используют не только любители философии, но и политики.

Софизм о девушке

Забавные софизмы

Эти философские уловки всегда использовались для того, чтобы ввести собеседника в заблуждение, а иногда над ним и потешиться. Следующие примеры логических софизмов показывают, что авторы древности не были лишены чувства юмора. Например:

Чтобы видеть, глаза человеку не нужны. Ведь он видит без правого глаза. И без левого он тоже способен видеть. Стало быть, глаза не являются необходимым условием, чтобы называться зрячим.

Следующий софизм построен в форме диалога, в котором мудрец задает вопросы крестьянину:

- А что, крестьянин, есть ли у тебя собака?

- Да, есть.

- Есть ли у нее кутята?

- Да, недавно появились на свет.

- Иными словами, получается, что эта собака – мать?

- Именно так, моя собака – мать.

- И эта собака твоя, крестьянин, не так ли?

- Моя, я же тебе сказал.

- Вот, ты сам признал, что твоя мать – собака. Значит, ты – пес.

И еще несколько примеров древних софизмов:

  • Что человек не терял, то у него есть. Рога он не терял. Значит, у него есть рога.
  • Чем больше самоубийц, тем меньше самоубийц.
  • Девушка – это человек. Девушка является молодой, а значит, она – молодой человек. Последний, в свою очередь, является парнем. Стало быть, девушка не является человеком, так как здесь наблюдается противоречие. (Данный софизм является доказательством от противного).

Эти 5 примеров софизмов показывают, что с мудрецами лучше не спорить, по крайней мере, до той поры, пока не обретены навыки логического мышления.

Софизм о собаке

Другие примеры

Известен и пример уловки о крокодиле, укравшем ребенка. Крокодил пообещал отцу ребенка, что вернет его, если тот угадает, станет ли возвращать крокодил малыша или же нет. Вопрос в этой дилемме звучит так: что нужно сделать крокодилу, если отец скажет, что крокодил не собирается возвращать ему ребенка?

Известен также и софизм о куче песка. Одна песчинка не является кучей песка. Если n песчинок не образуют собой кучу песка, стало быть, и n + 1 песчинок тоже не представляют собой кучу. Следовательно, никакое количество песчинок не смогут образовать собой кучу песка.

Еще один софизм называется «Всемогущий волшебник». Если волшебник всемогущ, может ли он создать камень, который ему не удастся поднять? Если такое колдовство он совершить сможет, то, стало быть, этот волшебник не всемогущ, ведь он не сможет поднять этот камень. А если у него это не получится, значит, он все равно не всемогущ. Ведь у него не получается создать такой камень.

Софизм о песке

Пример софизма о нарушителе

Данная философская уловка понравится тем, кто ищет примеры софизмов с ответами. В парк некоего богатого князя вход был воспрещен. Если кто-то попадался, то он должен был быть казнен. Однако нарушителю предоставлялось право выбрать казни: через повешение или обезглавливание. Перед наказанием преступник мог сделать какое-либо заявление. И если оно будет верным, то его обезглавят, если же ложно, то повесят. Какое это утверждение? Ответ таков – «вы меня повесите».

Софизм «Эпименид»

Выше были приведены примеры софизмов с ответами. Однако есть и такие уловки, над которыми можно тщетно биться годами, но так и не найти правильного ответа. Мыслитель будет ходить по замкнутому кругу, однако не сможет отыскать ключ к этой загадке. Пример софизма, который невозможно решить, повествует о критянине Эпимениде. Однажды он произнес фразу: «Все критяне – лжецы». Но ведь сам философ тоже являлся жителем Крита. Значит, он тоже лгал.

Софизмы и развитие логики

Парадокс критянина и судьбы несчастных философов

Но если Эпименид лжет, то, значит, его утверждение истинно? Но тогда он не является жителем Крита. Однако, согласно условию софизма, Эпименид – критянин, а значит… Все это значит только одно – мыслителю предстоит снова и снова ходить по замкнутому кругу. И не только ему. Известно, что стоик Хрисипп написал три книги, посвященные анализу этого примера софизма. Его известный коллега по имени Филет Косский не смог одолеть логической задачи и наложил на себя руки.

Интересные софизмы Древней Греции

А знаменитый логик Диодор Кронос, уже будучи в преклонных годах, дал обет – не есть до тех пор, пока ему не удастся решить эту задачку. Об этом случае пишет Диоген Лаэртский. По свидетельству историка, когда мудрец Диодор находился при дворе Птолемея, ему было предложено решить этот софизм. Так как справиться с ним философ не смог, то Птолемей прозвал его Кронос (в переводе это слово не только обозначает имя древнего бога времени, но и просто «глупец, болван»). Ходили слухи, что Диодор погиб то ли от голода, то ли оттого, что не смог выдержать подобного позора. Таким образом, кому-то слишком серьезное восприятие софизмов стоило жизни. Однако не стоит уподобляться древним философам и воспринимать софизмы слишком серьезно. Они являются хорошими упражнениями для развития логики, но ради них не стоит рисковать карьерой, а уж тем более жизнью.

Источник: fb.ru

Похожие материалы

Тату маори: значение символов. Традиционные татуировки тела и лица народа племени маори Тату маори: значение символов. Традиционные татуировки тела и лица народа племени маори

История племени маори берет свое начало много веков назад, когда первые люди, переплывшие Гаваику, оказались на земле Аотеароа. Прибывшими из этих загадочных и неизвестных земель и были маори. Народ, который переплыл ...

Детские загадки с подвохом: с ответами, смешные Детские загадки с подвохом: с ответами, смешные

Загадки не только помогают узнать что-то новое, запомнить какую-то особенность явления или предмета, но и могут развеселить. Заодно развиваются внимательность и смекалка.Загадки с подвохом (с ответами)...

Загадки для ребенка 5 лет с ответами Загадки для ребенка 5 лет с ответами

Загадки – хорошая возможность для развития творческого мышления, фантазии, сообразительности. Ребенок с детства учится мыслить нестандартно, включать логику и образное мышление. Разгадывание загадок требует и оп...

Викторины для детей в лагере с ответами Викторины для детей в лагере с ответами

Как устроить ребенку праздник? Всегда хочется, чтобы дети провели время весело и с пользой. Отличный вариант в таком случае — детская викторина.А вы любите викторины?Что это такое? Это игра, подр...

Сложные и легкие загадки про маму с ответами Сложные и легкие загадки про маму с ответами

Обучать детей лучше всего с помощью игры. Так ребенок будет воспринимать новые знания с удовольствием, причем прилагать усилий для запоминания ему не придется. А чтобы развивать у детей логику, им нужно загадывать заг...

Интеллектуальные вопросы с ответами. Вопросы для интеллектуальной игры Интеллектуальные вопросы с ответами. Вопросы для интеллектуальной игры

Интеллектуальные вопросы, предлагаемые школьникам во внеурочное время, позволяют развивать логическое мышление подрастающего поколения. Предлагаем разные вопросы, которые можно использовать в работе классному руководи...

Загадки про зиму с ответами для детей Загадки про зиму с ответами для детей

Загадка... Это слово всегда притягивало всех людей своей тайной и желанием разгадать ее. Она может быть разной по своей природе, как масштабное и великое чудо, разгадать которое невозможно тысячелетиями, так и обычным...

Модальные глаголы в английском языке: примеры с переводом Модальные глаголы в английском языке: примеры с переводом

Модальные глаголы в английском языке являются одной из групп глаголов. Их основная особенность – это модальное значение, то есть выражение желаний, намерений сделать некое действие или необходимости. Часть модал...

Данетка с ответами: описание и отзывы Данетка с ответами: описание и отзывы

Людьми придумано множество развлечений, игр в компании друзей. Есть физические, активные, а имеются и смысловые, интеллектуальные. К последним относится «Данетка» с ответами, и она, наряду с другими словес...

Загадки для ребенка 4 лет с ответами Загадки для ребенка 4 лет с ответами

С загадками человек знакомится с раннего детства. Их любят разгадывать и взрослые, и дети. Это увлекательное занятие, которое приносит пользу в плане умственного развития и логического мышления человека.Что та...

kak.green

Софизмы

Софизмы ---- Софисты ---- Контакты

 

Думаю, многие хотя бы раз в жизни слышали подобные высказывания: «Все числа равны» или «два равно трём». Таких примеров может быть очень много, но что же это значит? Кто это придумал? Можно-ли как-то объяснить эти высказывания или всё это – вымысел? На эти вопросы, и на многие другие я хочу ответить в своей работе. Существуют различные софизмы: логические, терминологические, психологические, математические и т.д.

ПОНЯТИЕ «СОФИЗМ»

Софизм – (от греческого sophisma , «мастерство, умение, хитрая выдумка, уловка») - умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям. Софизм, в отличие от паралогизма, основан на преднамеренном, сознательном нарушении правил логики. Каким бы ни был софизм, он всегда содержит одну или несколько замаскированных ошибок. Математический софизм – удивительное утверждение, в доказательстве которого кроются незаметные, а подчас и довольно тонкие ошибки. История математики полна неожиданных и интересных софизмов, разрешение которых порой служило толчком к новым открытиям. Математические со-физмы приучают внимательно и настороженно продвигаться вперед, тщательно следить за точностью формулировок, правильностью записи черте-жей, за законностью математических операций. Очень часто понимание ошибок в софизме ведет к пониманию математики в целом, помогает развивать логику и навыки правильного мышления. Если нашел ошибку в софизме, значит, ты ее осознал, а осознание ошибки предупреждает от ее повторения в дальнейших математических рассуждениях. Софизмы не приносят пользы, если их не понимать.

ЭКСКУРС В ИСТОРИЮ

Софистами называли группу древнегреческих философов 4-5 века до н.э., достигших большого искусства в логике. В период падения нравов древнегреческого общества( 5 век) появляются так называемые учителя красноречия, которые целью своей деятельности считали и называли приобретение и распространения мудрости, вследствие чего они именовали себя софистами. Наиболее известна деятельность старших софистов, к которым относят Протагора из Абдеры, Горгия из Леонтип, Гиппия из Элиды и Продика из Кеоса. Но суть деятельности софистов много больше, чем простое обучение искусству красноречия. Они обучали и просвещали древнегреческий народ, старались способствовать достижению нравственности, присутствия духа, способности ума ориентироваться во всяком деле. Но софисты не были учеными. Умение, которое должно было быть достигнуто с их помощью, заключалось в том, что человек учился иметь в виду многообразные точки зрения. Аристотель называл софизмом «мнимые доказательства», в которых обос-нованность заключения кажущаяся и обязана чисто субъективному впечатлению, вызванному недостаточностью логического анализа. Убедительность на первый взгляд многих софизмов, их «логичность» обычно связана с хорошо замаскированной ошибкой — семиотической: за счёт метафоричности речи, нарушающих однозначность мысли и приводящих к смешению значений терминов, или же логической: подмена основной мысли (тезиса) доказательства, принятие ложных посылок за истинные, несоблюдение допустимых способов рассуждения (правил логического вывода), использование «неразрешённых» или даже «запрещённых» правил или действий, например деления на нуль в математических софизмах. Исторически с понятием «софизм» неизменно связывают идею о намеренной фальсификации, руководствуясь признанием Протагора, что задача софиста (софист, от греч. sophistes — умелец, изобретатель, мудрец, лжемудрец) — представить наихудший аргумент как наилучший путём хитроумных уловок в речи, в рассуждении, заботясь не об истине, а об успехе в споре или о практической выгоде. С этой же идеей обычно связывают и «критерий основания», сформулированный Протагором: мнение человека есть мера истины. Так, софизм «куча» («Одно зерно — не куча. Если n зё-рен не куча, то n + 1 зерно — тоже не куча. Следовательно, любое число зёрен — не куча») — это лишь один из «парадоксов транзитивности», возникающих в ситуации «неразличимости».

АРИФМЕТИЧЕСКИЕ СОФИЗМЫ

Арифметика - (греч. arithmetika, от arithmys — число), наука о числах, в первую очередь о натуральных (целых положительных) числах и (рацио-нальных) дробях, и действиях над ними. Так что же такое арифметические софизмы? Арифметические софизмы – это числовые выражения, имеющие неточность или ошибку, не заметную с первого взгляда.

1. « Если А больше В, то А всегда больше, чем 2В»

Возьмем два произвольных положительных числа А и В, такие, что А>В. Умножив это неравенство на В, получим новое неравенство АВ>В*В, а отняв от обеих его частей А*А, получим неравенство АВ-А*А>В*В-А*А, которое равносильно следующему: А(В-А)>(В+А)(В-А). (1) После деления обеих частей неравенства (1) на В-А получим, что А>В+А (2), А прибавив к этому неравенству почленно исходное неравенство А>В, имеем 2А>2В+А, откуда А>2В. Итак, если А>В, то А>2В. Это означает, к примеру, что из неравенства 6>5 следует, что 6>10. Где же ошибка??? Здесь совершен неравносильный переход от неравенства (1) к неравенству (2). Действительно, согласно условию А>В, поэтому В-А

2. «Число, равное другому числу, одновременно и больше, и меньше его».

Возьмем два произвольных положительных равных числа А и В и напи-шем и напишем для них следующие очевидные неравенства: А>-В и В>-В. (1) Перемножив оба этих неравенства почленно, получим неравенство А*В>В*В, а после его деления на В, что вполне законно, ведь В>0, придем к выводу, что А>В. (2) Записав же два других столь же бесспорных неравенства В>-А и А>-А, (3) Аналогично предыдущему получим, что В*А>А*А, а разделив на А>0, придем к неравенству А>В. (4) Итак, число А, равное числу В, одновременно и больше, и меньше его. Где ошибка??? Здесь совершен неравносильный переход от одного неравенства к другому при недопустимом перемножении неравенств. Проделаем правильные преобразования неравенств. Запишем неравенство (1) в виде А+В>0, В+В>0. Левые части этих неравенств положительны, следовательно, умножая почленно оба эти неравенства (А+В)(В+В)>0, или А>-В, что представляет собой просто верное неравенство. Аналогично предыдущему, записывая неравенства (3) в виде (В+А)>0, А+А>0, получим просто верное неравенство В>-А.

АЛГЕБРАИЧЕСКИЕ СОФИЗМЫ

Алгебра — один из больших разделов математики, принадлежащий наряду с арифметикой и геометрией к числу старейших ветвей этой науки. Задачи, а также методы А., отличающие её от других отраслей математики, создавались постепенно, начиная с древности. Алгебра возникла под влиянием нужд общественной практики, в результате поисков общих приёмов для решения однотипных арифметических задач. Приёмы эти заключаются обычно в составлении и решении уравнений. Т.е. алгебраические софизмы – намеренно скрытые ошибки в уравнениях и числовых выражениях. 1. «Два неодинаковых натуральных числа равны между собой» решим систему двух уравнений:

х+2у=6, (1) у=4- х/2 (2)

Сделаем это подстановкой у из 2го уравнения в 1, получаем х+8-х=6, отку-да 8=6 Где же ошибка??? Уравнение (2) можно записать как х+2у=8, так что исходная система за-пишется в виде:

Х+2у=6, Х+2у=8

В этой системе уравнений коэффициенты при переменных одинаковы, а правые части не равны между собой, из этого следует, что система несо-вместна, т.е. не имеет ни одного решения. Графически это означает, что прямые у=3-х/2 и у=4-х/2 параллельны и не совпадают. Перед тем, Как решать систему линейных уравнений, полезно проанализировать, имеет ли система единственное решение, бесконечно много решений или не имеет решений вообще.

2. «Отрицательное число больше положительного». Возьмем два положительных числа а и с. Сравним два отношения: а/-c и -а/c Они равны, так как каждое из них равно –(а/с). Можно составить пропорцию: a/-c=-a/c Но если в пропорции предыдущий член первого отношения больше последующего, то предыдущий член второго отношения также больше своего последующего. В нашем случае а>-с, следо-вательно, должно быть –а>с, т.е. отрицательное число больше положительного. Где ошибка??? Данное свойство пропорции может оказаться неверным, если не-которые члены пропорции отрицательны.

3. «Дважды два равно пяти».

Обозначим 4=а, 5=b, (a+b)/2=d. Имеем: a+b=2d, a=2d-b, 2d-a=b. перемножим два последних равенства по частям. Получим: 2da-a*a=2db-b*b. Умножим обе части получившегося равенства на –1 и прибавим к результатам d*d. Будем иметь: a 2-2da+d2=b2 -2bd+d2, или (a-d)(a-d)=(b-d)(b-d), откуда a-d=b-d и a=b, т.е. 2*2=5 Где ошибка??? Из равенства квадратов двух чисел не следует, что сами эти числа равны.

ГЕОМЕТРИЧЕСКИЕ СОФИЗМЫ

Геометрические софизмы – это умозаключения или рассуждения, обосновывающие какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, связанное с геометрическими фигурами и действиями над ними. 1. « Спичка вдвое длиннее телеграфного столба»

Пусть, а дм- длина спички и b дм - длина столба. Разность между b и a обозначим через c . Имеем b - a = c, b = a + c. Перемножаем два эти равенства по частям, нахо-дим: b2 - ab = ca + c2. Вычтем из обеих частей bc. Получим: b2- ab - bc = ca + c2 - bc, или b(b - a - c) = - c(b - a - c), откуда b = - c, но c = b - a, поэтому b = a - b, или a = 2b. Где ошибка??? В выражении b(b-a-c )= -c(b-a-c) производится деление на (b-a-c), а этого делать нельзя, так как b-a-c=0.Значит, спичка не может быть вдвое длиннее телеграфного столба.

ПРОЧИЕ СОФИЗМЫ

Кроме математических софизмов, существует множество других, например: логические, терминологические, психологические и т.д. Понять абсурдность таких утверждений проще, но от этого они не становятся менее интересными. Очень многие софизмы выглядят как лишенная смысла и цели игра с языком; игра, опирающаяся на многозначность языковых выражений, их неполноту, недосказанность, зависимость их значений от контекста и т.д. Эти софизмы кажутся особенно наивными и несерьезными.

«Полупустое и полуполное» «Полупустое есть то же, что и полуполное. Если равны половины, значит, равны и целые. Следовательно, пустое есть то же, что и полное».

«Чётное и нечётное» «5 есть 2 + 3 («два и три»). Два — число чётное, три — нечётное, выходит, что пять — число и чётное и нечётное. Пять не делится на два, также, как и 2 + 3, значит, оба числа не чётные!»

«Не знаешь то, что знаешь» «Знаешь ли ты, о чём я хочу тебя спросить?» — «Нет». — «Знаешь ли ты, что добродетель есть добро?» — «Знаю». — «Об этом я и хотел тебя спросить. А ты, выходит, не знаешь то, что знаешь».

«Лекарства» «Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит, лекарств нужно принимать как можно больше».

«Вор» «Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего».

«Отец — собака» «Эта собака имеет детей, значит, она — отец. Но это твоя собака. Значит, она твой отец. Ты её бьёшь, значит, ты бьёшь своего отца и ты — брат щенят».

«Рогатый» «Что ты не терял, то имеешь. Рога ты не терял. Значит, у тебя рога».

«Чем больше» «Чем больше я пью водки, тем больше у меня трясутся руки. Чем больше у меня трясутся руки, тем больше спиртного я проливаю. Чем больше я проливаю, тем меньше я выпиваю. Значит, чтобы пить меньше, надо пить больше».

«Самое быстрое существо не способно догнать самое медленное» Быстроногий Ахиллес никогда не настигнет медлительную черепаху. Пока Ахиллес добежит до черепахи, она продвинется немного вперед. Он быстро преодолеет и это расстояние, но черепаха уйдет еще чуточку вперед. И так до бесконечности. Всякий раз, когда Ахиллес будет достигать места, где была перед этим черепаха, она будет оказываться хотя бы немного, но впереди.

«Нет конца» Движущийся предмет должен дойти до половины своего пути прежде, чем он достигнет его конца. Затем он должен пройти половину оставшейся половины, затем половину этой четвертой части и т.д. до бесконечности. Предмет будет постоянно приближаться к конечной точке, но так никогда ее не достигнет.

«Медимн зерна» Большая масса мелких, просяных например, зерен при падении на землю всегда производит шум. Он складывается из шума отдельных зерен, и, значит, каждое зерно и каждая малейшая часть зерна должны, падая, произво-дить шум. Однако отдельное зерно падает на землю совершенно бесшумно. Значит, и падающий на землю медимн зерна не должен был бы производить шум, ведь он состоит из множества зерен, каждое из которых падает бесшумно. Но все-таки медимн зерна падает с шумом!

«Куча» Одна песчинка не есть куча песка. Если n песчинок не есть куча песка, то и n+1 песчинка - тоже не куча. Следовательно, никакое число песчинок не образует кучу песка. К этому парадоксу можно сделать следующий комментарий: метод полной математической индукции нельзя применять, как показывает парадокс, к объёмно неопределённым понятиям, каковым является понятие "куча песка".

«Может ли всемогущий маг создать камень, который не сможет поднять?» Если не может - значит, он не всемогущий. Если может - значит, всё равно не всемогущий, т.к. он не может поднять это камень. «Равен ли полный стакан пустому?» Да. Проведем рассуждение. Пусть имеется стакан, наполненный водой до половины. Тогда можно сказать, что стакан, наполовину полный равен стакану, наполовину пустому. Увеличивая обе части равенства вдвое, получим, что стакан полный равен стакану пустому.

«Софизм Кратила» Диалектик Гераклит, провозгласив тезис "все течет", пояснял, что в одну и ту же реку (образ природы) нельзя войти дважды, ибо когда входящий будет входить в следующий раз, на него будет течь уже другая вода. Его ученик Кратил, сделал из утверждения учителя другие выводы: в одну и ту же реку нельзя войти даже один раз, ибо пока ты входишь, она уже изменится.

«Софизм Эватла» Эватл брал уроки софистики у софиста Протагора под тем условием, что гонорар он уплатит только в том случае, если выиграет первый процесс. Ученик после обучения не взял на себя ведения какого-либо процесса и потому считал себя вправе не платить гонорара. Учитель грозил подать жалобу в суд, говоря ему следующее: "Судьи или присудят тебя к уплате гонорара или не присудят. В обоих случаях ты должен будешь уплатить. В первом случае в силу приговора судьи, во втором случае в силу нашего договора". На это Эватл отвечал: "Ни в том, ни в другом случае я не заплачу. Если меня присудят к уплате, то я, проиграв первый процесс, не заплачу в силу нашего договора, если же меня не присудят к уплате гонорара, то я не заплачу в силу приговора суда". (Ошибка становится ясной, если мы раздельно поставим два вопроса: 1) должен ли Эватл платить или нет и 2) выполнены ли условия договора или нет.)

Другие примеры софизмов, сформулированных еще в древней Греции:

«Сидящий встал; кто встал, тот стоит; следовательно, сидящий стоит».

«Сократ - человек; человек - не то же самое, что Сократ; значит, Сократ - это нечто иное, чем Сократ».

«Для того чтобы видеть, вовсе необязательно иметь глаза, ведь без правого глаза мы видим, без левого тоже видим; кроме правого и левого, других глаз у нас нет; поэтому ясно, что глаза не являются необходимыми для зрения».

«Тот, кто лжет, говорит о деле, о котором идет речь, или не говорит о нем; если он говорит о деле, он не лжет; если он не говорит о деле, он говорит о чем-то несуществующем, а о нем невозможно не только лгать, но даже мыслить и говорить».

«Если какой-нибудь человек говорит, что он лжет, то лжет ли он или говорит правду?» Допущение того, что он говорит правду, будет означать, что правдой является то, что он лжет (об этом он и говорит), значит, выходит, что лжет. Если же он лжет, то это как раз и есть то, что он открыто признает. Получается, что он говорит правду».

А вот несколько примеров современных софизмов:

«Одна и та же вещь не может иметь какое-то свойство и не иметь его. Хозрасчет предполагает самостоятельность, заинтересованность и ответственность. Заинтересованность — это, очевидно, не ответственность, а ответственность — не самостоятельность. Получается вопреки сказанному вначале, что хозрасчет включает самостоятельность и несамостоятельность, ответственность и безответственность».

«Акционерное общество, получившее когда-то ссуду от государства, те-перь ему уже не должно, так как оно стало иным: в его правлении не осталось никого из тех, кто просил ссуду».

© 2009г.Харламов Кирилл; Все права защищены

статистика

sofizmy.narod.ru

Софизм - это... Что такое Софизм?

Софи́зм (от греч. σόφισμα, «мастерство, умение, хитрая выдумка, уловка, мудрость») — ложное высказывание, которое, тем не менее, при поверхностном рассмотрении кажется правильным. Софизм основан на преднамеренном, сознательном нарушении правил логики. Это отличает его от паралогизма и апории, которые могут содержать непреднамеренную ошибку либо вообще не иметь логических ошибок, но приводить к явно неверному выводу.

История

Аристотель называл софизмом «мнимые доказательства», в которых обоснованность заключения кажется верной и обязана чисто субъективному впечатлению, вызванному недостаточностью логического или семантического анализа. Убедительность на первый взгляд многих софизмов, их «логичность» обычно связана с хорошо замаскированной ошибкой — семиотической: за счёт метафоричности речи, омонимии или полисемии слов, амфиболий и пр., нарушающих однозначность мысли и приводящих к смешению значений терминов, или же логической: подмена основной мысли (тезиса) доказательства, принятие ложных посылок за истинные, несоблюдение допустимых способов рассуждения (правил логического вывода), использование «неразрешённых» или даже «запрещённых» правил или действий, например деления на нуль в математических софизмах (Последнюю ошибку можно считать и семиотической, так как она связана с соглашением о «правильно построенных формулах»).

Вот один из древних софизмов («рогатый»), приписываемый Эвбулиду: «Что ты не терял, то имеешь. Рога ты не терял. Значит, у тебя рога». Здесь маскируется двусмысленность большей посылки. Если она мыслится универсальной: «Всё, что ты не терял…», то вывод логически безупречен, но неинтересен, поскольку очевидно, что большая посылка ложна; если же она мыслится частной, то заключение не следует логически. Последнее, однако, стало известно лишь после того, как Аристотель сформулировал логику.

А вот современный софизм, обосновывающий, что с возрастом «годы жизни» не только кажутся, но и на самом деле короче: «Каждый год вашей жизни — это её 1/n часть, где n — число прожитых вами лет. Но n + 1>n. Следовательно, 1 / (n + 1) < 1 / n».

Исторически с понятием «софизм» неизменно связывают идею о намеренной фальсификации, руководствуясь признанием Протагора о том, что задача софиста — представить наихудший аргумент как наилучший путём хитроумных уловок в речи, в рассуждении, заботясь не об истине, а об успехе в споре или о практической выгоде. (Известно, что сам Протагор оказался жертвой «софизма Эватла»). С этой же идеей обычно связывают и «критерий основания», сформулированный Протагором: мнение человека есть мера истины. Уже Платон заметил, что основание не должно заключаться в субъективной воле человека, иначе придётся признать законность противоречий (что, между прочим, и утверждали софисты), а поэтому любые суждения считать обоснованными. Эта мысль Платона была развита в аристотелевском «принципе непротиворечия» (см. Логический закон) и, уже в современной логике, — в истолкованиях и требовании доказательств «абсолютной» непротиворечивости. Перенесённая из области чистой логики в область «фактических истин», она породила особый «стиль мышления», игнорирующий диалектику «интервальных ситуаций», то есть таких ситуаций, в которых критерий Протагора, понятый, однако, более широко, как относительность истины к условиям и средствам её познания, оказывается весьма существенным. Именно поэтому многие рассуждения, приводящие к парадоксам и в остальном безупречные, квалифицируются как софизмы, хотя по существу они только демонстрируют интервальный характер связанных с ними гносеологических ситуаций. Так, софизм «куча» («Одно зерно — не куча. Если n зёрен не куча, то n + 1 зерно — тоже не куча. Следовательно, любое число зёрен — не куча») — это лишь один из «парадоксов транзитивности», возникающих в ситуации «неразличимости». Последняя служит типичным примером интервальной ситуации, в которой свойство транзитивности равенства при переходе от одного «интервала неразличимости» к другому, вообще говоря, не сохраняется, и поэтому принцип математической индукции в таких ситуациях неприменим. Стремление усматривать в этом свойственное опыту «нетерпимое противоречие», которое математическая мысль «преодолевает» в абстрактном понятии числового континуума (А. Пуанкаре), не обосновывается, однако, общим доказательством устранимости подобного рода ситуаций в сфере математического мышления и опыта. Достаточно сказать, что описание и практика применения столь важных в этой сфере «законов тождества» (равенства) так же, вообще говоря, как и в эмпирических науках, зависит от того, какой смысл вкладывают в выражение «один и тот же объект», какими средствами или критериями отождествления при этом пользуются. Другими словами, идёт ли речь о математических объектах или, к примеру, об объектах квантовой механики, ответы на вопрос о тождестве неустранимым образом связаны с интервальными ситуациями. При этом далеко не всегда тому или иному решению этого вопроса «внутри» интервала неразличимости можно противопоставить решение «над этим интервалом», то есть заменить абстракцию неразличимости абстракцией отождествления. А только в этом последнем случае и можно говорить о «преодолении» противоречия.

По-видимому, первыми, кто понял важность семиотического анализа софизмов, были сами софисты. Учение о речи, о правильном употреблении имён Продик считал важнейшим. Анализ и примеры софизмов часто встречаются в диалогах Платона. Аристотель написал специальную книгу «О софистических опровержениях», а математик Евклид — «Псевдарий» — своеобразный каталог софизмов в геометрических доказательствах. Сочинение «Софизмы» (в двух книгах) написал ученик Аристотеля Феофраст (D.L. V. 45). В средние века в Западной Европе составлялись целые коллекции софизмов. Например, собрание, приписываемое английскому философу и логику XIII века Ричарду Софисту, насчитывает свыше трехсот софизмов. Некоторые из них напоминают высказывания представителей древнекитайской школы имён (мин цзя).

Классификация ошибок

Логические

Так как обычно вывод может быть выражен в силлогистической форме, то и всякий софизм может быть сведён к нарушению правил силлогизма. Наиболее типичными источниками логических софизмов являются следующие нарушения правил силлогизма:

  1. Вывод с отрицательной меньшей посылкой в первой фигуре: «Все люди суть разумные существа, жители планет не суть люди, следовательно, они не суть разумные существа»;
  2. Вывод с утвердительными посылками во второй фигуре: «Все, находящие эту женщину невинной, должны быть против наказания её; вы — против наказания её, значит, вы находите её невинной»;
  3. Вывод с отрицательной меньшей посылкой в третьей фигуре: «Закон Моисеев запрещал воровство, закон Моисеев потерял свою силу, следовательно, воровство не запрещено»;
  4. Особенно распространённая ошибка quaternio terminorum, то есть употребление среднего термина в большой и в меньшей посылке не в одинаковом значении: «Все металлы — простые вещества, бронза — металл: бронза — простое вещество» (здесь в меньшей посылке слово «металл» употреблено не в точном химическом значении слова, обозначая сплав металлов): отсюда в силлогизме получаются четыре термина.

Терминологические

Грамматические, терминологические и риторические источники софизмов выражаются

В устную речь математиками введены такие слова как «сумма», «произведение», «разность». Так 5 + 2 * 2 — сумма произведения два на два и пятерки, а (5 + 2) * 2 — удвоенная сумма двух и пяти.

  • Более сложные софизмы проистекают из неправильного построения целого сложного хода доказательств, где логические ошибки являются замаскированными неточностями внешнего выражения. Сюда относятся:
    1. Petitio principii: введение заключения, которое требуется доказать, в скрытом виде в доказательство в качестве одной из посылок. Если мы, например, желая доказать безнравственность материализма, будем красноречиво настаивать на его деморализующем влиянии, не заботясь дать отчёт, почему именно материализм — безнравственная теория, то наши рассуждения будут заключать в себе petitio principii.
    2. Ignoratio elenchi заключается в том, что начав доказывать некоторый тезис, постепенно в ходе доказательства переходят к доказательству другого положения, сходного с тезисом.
    3. A dicto secundum ad dictum simpliciter подменяет утверждение, сказанное с оговоркой, на утверждение, не сопровождаемое этой оговоркой.
    4. Non sequitur представляет отсутствие внутренней логической связи в ходе рассуждения: всякое беспорядочное следование мыслей представляет частный случай этой ошибки.

Психологические

Психологические причины С. бывают троякого рода: интеллектуальные, аффективные и волевые. Во всяком обмене мыслей предполагается взаимодействие между 2 лицами, читателем и автором или лектором и слушателем, или двумя спорящими. Убедительность С. поэтому предполагает два фактора: α — психические свойства одной и β — другой из обменивающихся мыслями сторон. Правдоподобность С. зависит от ловкости того, кто защищает его, и уступчивости оппонента, а эти свойства зависят от различных особенностей обеих индивидуальностей.

Интеллектуальные причины

Интеллектуальные причины софизма заключаются в преобладании в уме лица, поддающегося С., ассоциаций по смежности над ассоциациями по сходству, в отсутствии развития способности управлять вниманием, активно мыслить, в слабой памяти, непривычке к точному словоупотреблению, бедности фактических знаний по данному предмету, лености в мышлении (ignava ratio) и т. п. Обратные качества, разумеется, являются наиболее выгодными для лица, защищающего С.: обозначим первые отрицательные качества через b, вторые соответствующие им положительные через a.

Аффективные причины

Сюда относятся трусость в мышлении — боязнь опасных практических последствий, вытекающих от принятия известного положения; надежда найти факты, подтверждающие ценные для нас взгляды, побуждающая нас видеть эти факты там, где их нет, любовь и ненависть, прочно ассоциировавшиеся с известными представлениями, и т. д. Желающий обольстить ум своего соперника софист должен быть не только искусным диалектиком, но и знатоком человеческого сердца, умеющим виртуозно распоряжаться чужими страстями для своих целей. Обозначим аффективный элемент в душе искусного диалектика, который распоряжается им как актёр, чтобы тронуть противника, через c, а те страсти, которые пробуждаются в душе его жертвы и омрачают в ней ясность мышления через d. Argumentum ad hominem, вводящий в спор личные счёты, и argumentum ad populum, влияющий на аффекты толпы, представляют типичные С. с преобладанием аффективного элемента.

Волевые причины

При обмене мнений мы воздействуем не только на ум и чувства собеседника, но и на его волю. Во всякой аргументации (особенно устной) есть элемент волевой — императивный — элемент внушения. Категоричность тона, не допускающего возражения, определённая мимика и т. п. (e) действуют неотразимым образом на лиц, легко поддающихся внушению, особенно на массы. С другой стороны, пассивность (f) слушателя особенно благоприятствует успешности аргументации противника. Таким образом, всякий С. предполагает взаимоотношение между шестью психическими факторами: a + b + c + d + e + f. Успешность С. определяется величиной этой суммы, в которой a + c + e составляет показатель силы диалектика, b + d + f есть показатель слабости его жертвы. Прекрасный психологический анализ софистики даёт Шопенгауэр в своей «Эристике» (перев. кн. Д. Н. Цертелева). Само собой разумеется, что логические, грамматические и психологические факторы теснейшим образом связаны между собой; поэтому С., представляющий, например, с логической точки зрения quaternio ter.

Способ нахождения ошибки в софизме

  • Внимательно прочитать условие предложенной вам задачи. Начинать поиск ошибки лучше с условия предложенного софизма. В некоторых софизмах абсурдный результат получается из-за противоречивых или неполных данных в условии, неправильного чертежа, ложного первоначального предположения, а далее все рассуждения проводятся верно. Это и вызывает затруднения при поиске ошибки. Все привыкли, что задания, предполагаемые в различной литературе, не содержат ошибок в условии и, поэтому, если получается неверный результат, то ошибку они ищут непременно по ходу решения.
  • Установите области знаний (темы), которые отражены в софизме, предложенных преобразованиях. Софизм может делиться на несколько тем, которые потребуют детального анализа каждой из них.
  • Выясните, соблюдены ли все условия применимости теорем, правил, формул, соблюдена ли логичность. Некоторые софизмы построены на неверном использовании определений, законов, на «забывании» условий применимости. Очень часто в формулировках, правилах запоминаются основные, главные фразы и предложения, всё остальное упускаются. И тогда второй признак равенства треугольников превращается в признак «по стороне и двум углам».
  • Проверяйте результаты преобразования обратным действием.
  • Часто следует разбить работу на небольшие блоки и проконтролировать правильность каждого такого блока.

Примеры софизмов

Проблемы с содержанием статьи Список примеров в этой статье не основывается на авторитетных источниках непосредственно о предмете статьи.

Добавьте ссылки на источники, предметом рассмотрения которых является тема настоящей статьи в целом, и содержащие данные элементы списка как примеры. В противном случае раздел может быть удалён.

Полупустое и полуполное

Полупустое есть то же, что и полуполное. Если равны половины, значит, равны и целые. Следовательно, пустое есть то же, что и полное.

Чётное и нечётное

5 есть 2+3 («два и три»). Два — число чётное, три — нечётное, выходит, что пять — число и чётное и нечётное. Пять не делится на два, также, как и 2+3, значит, оба числа нечётные.

Не знаешь то, что знаешь

— Знаешь ли ты то, о чём я хочу тебя спросить?— Нет.— Знаешь ли ты, что добродетель есть добро?— Знаю.— Об этом я и хотел тебя спросить. А ты, выходит, не знаешь то, что знаешь.

Лекарства

Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит, лекарств нужно принимать как можно больше.

Вор

Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего.

Рогатый

Есть ли у тебя то, что ты не терял? Конечно есть. Ты рога не терял, значит они у тебя есть.

2=3

10-10=0

15-15=0

10-10=15-15

2(5-5)=3(5-5)

2=3

Ошибка в том, что на ноль (5-5) делить нельзя.

Литература

  • Ахманов А. С., Логическое учение Аристотеля, М., 1960;
  • Брутян Г. Паралогизм, софизм и парадокс // Вопросы философии.1959.№ 1.С.56-66.
  • Брадис В. М., Минковский В. Л., Еленев Л. К., Ошибки в математических рассуждениях, 3 изд., М., 1967.
  • Билык А.М., Билык Я.М. К вопросу о проблемной технике софизма (ее связь с современным пониманием научной проблемы) // Философские науки. № 2. 1989. - С.114-117.
  • Морозов Н. А. О научном значении математических софизмов // Известия научного института им. П. Ф. Лесгафта. Пг., 1919.Т.1.С.193-207.
  • Павлюкевич В. В. Логико-методологический статус софизмов // Современная логика:проблемы теории, истории и применения в науке. СПб.,2002. С. 97-98.
  • Read, Stephen (ed).: Sophisms in Medieval Logic and Grammar, Acts of the 8th European Symposium for Medieval Logic and Semantics, Kluwer, 1993
  • Cassagnac, Joachim .: Merde à Celui qui le lira, Flammarion, 1974
  • Тульчинский М. Е. Занимательные задачи-парадоксы и софизмы по физике. М. 1971.
  • Дёмин Р. Н. Собрание «задач» Ричарда Софиста как контекст для «парадоксов» древнекитайской школы имен // Вестник РХГА № 6, СПб., 2005. С. 217—221. http://www.rchgi.spb.ru/Pr/vest_6.htm
  • Неркарарян К. В., Софизмы и парадоксы, 1 издание, 2001

См. также

dic.academic.ru

СОФИЗМЫ КАК ПРОБЛЕМЫ. Искусство правильно мыслить

СОФИЗМЫ КАК ПРОБЛЕМЫ

Употребление софизмов с целью обмана заставляет относиться к ним с осуждением. Неприязнь с софистике как систематическому использованию мошеннических приемов велика и вполне оправданна. Но эта неприязнь не должна заслонять тот факт, что софизмы могут играть и другую роль.

Софизмы древних нередко использовались с намерением ввести в заблуждение. Но они имели и другую, гораздо более интересную сторону.

Когда эти софизмы были впервые сформулированы, о правилах логики еще ничего не было известно. Сама возможность существования логики как науки о правильном рассуждении даже не предполагалась. Говорить в такой ситуации об умышленном нарушении данных правил можно только с натяжкой.

Широкую распространенность софизмов в Древней Греции можно понять, если предположить, что они выражали дух своего времени и являлись одной из особенностей античного стиля мышления. В древности софизмы были прежде всего своеобразной формой осознания и словесного выражения проблемной ситуации.

Первым на эту сторону дела обратил внимание в начале прошлого века немецкий философ Г. Гегель. Он проанализировал ряд старых софизмов и вскрыл те реальные проблемы, которые поднимались ими.

Большое число софизмов обыгрывает тему скачкообразного характера всякого изменения и развития. Постепенное, незаметное, чисто количественное изменение какого-то объекта не может продолжаться бесконечно. В определенный момент оно достигает своего предела, происходит резкое качественное изменение — скачок — и объект переходит в другое качество. Например, при температуре от 0° до 100°С вода представляет собой жидкость. Постепенное нагревание ее заканчивается тем, что при 100°С она закипает и резко, скачком переходит в другое качественное состояние — превращается в пар.

Вопросы софистов: «Создает ли прибавление одного зерна к уже имеющимся зернам кучу?», «Становится ли хвост лошади голым, если вырвать из него один волос?»— кажутся наивными. Но в них, говорит Гегель, находит свое выражение попытка древних греков представить наглядно скачкообразность всякого изменения.

Многие софизмы поднимали проблему текучести, изменчивости окружающего мира и в своеобразной форме указывали на трудности, связанные с отождествлением объектов в потоке непрерывного изменения.

«Взявший взаймы, — говорит древний софист, — теперь уже ничего не должен, так как он стал другим». «Приглашенный вчера на обед приходит сегодня непрошенным, так как он уже другое лицо» — здесь опять-таки речь не о займах и обедах, а о том, что всеобщая изменчивость вещей постоянно сталкивает нас с вопросом: остался рассматриваемый предмет тем же самым или же он настолько переменился, что его надо считать другим?

Очень часто софизмы ставят в неявной форме проблему доказательства. Что представляет собой доказательство, если можно придать видимость убедительности нелепым утверждением, явно не совместимым с фактами? Например, убедить человека в том, что у него есть рога, копыта или хвост, что он произошел от собаки и пр.

Сформулированные в тот период, когда науки логики еще не было, древние софизмы прямо ставили вопрос о необходимости ее построения. Прямо в той мере, в какой это вообще возможно для софистического способа постановки проблем. Именно с софизмов началось осмысление и изучение доказательства и опровержения. И в этом плане софизмы непосредственно содействовали возникновению особой науки о правильном, доказательном мышлении.

Не может быть, конечно, и речи о реабилитации или каком-то оправдании тех рассуждений, которые преследуют цель выдать ложь за истину, используя для этого логические или иные ошибки. Нужно, однако, помнить о том, что слово «софизм» имеет, кроме этого современного и хорошо устоявшегося смысла, еще и иное значение. В этом значении софизм представляет собой неизбежную на определенном этапе развития мышления форму постановки проблем.

Поделитесь на страничке

Следующая глава >

fil.wikireading.ru

Софизмы и парадоксы в математике

скачать файлНОУ Соль-Илецкого района

Реферат по математике на тему

Софизмы и парадоксы в математике

Выполнен учеником 6 «Б» класса

МОБУ «Лицей Соль-Илецкого района»

Старченко Станиславом

Научный руководитель –

учитель математики

МОБУ «Лицей Соль-Илецкого района»

Сапожникова Лариса Венделиновна

г.Соль-Илецк 2014

Содержание:

Введение--------------------------------------------------------------------------------------3

Глава 1. Историческая справка----------------------------------------------------------4

1. 1. Примеры логических софизмов ---------------------------------------------------6 1.2. Апории Зенона-------------------------------------------------------------------------9 2.1. Логические парадоксы--------------------------------------------------------------10

3.1. Физические софизмы и парадоксы.-----------------------------------------------12 4.1. Различие и сходство между софизмами и логическими парадоксами----13

5.1. Исследовательская часть-----------------------------------------------------------14

Заключение……………………………………………………..………………..16

Введение:

Люди постоянно стремятся расширить свои знания и обогатить свою память, однако, как сказал Гераклид: «Само по себе многознание – это не мудрость. Мудрость предполагает знание оснований и причин».

Мы обратились к теме софизмов и парадоксов по нескольким причинам.

Во-первых, мы очень любим решать задачи и разгадывать математические ребусы, но в математике есть «задачи-ловушки», которые не похожи на другие, они как будто - бы правильные, но в то же время неправильные. Это софизмы!

Во-вторых, поиск заключенных в софизме ошибок, ясное понимание их причин ведут к осмысленному постижению математики и, кроме того, показывает, что математика – это живая наука. Да и разбор софизмов и парадоксов сам по себе развивает навыки мышления.

В-третьих, это просто интересно, интригующе и увлекательно.

Итак, цель нашей работы

  • Понять, что такое софизмы и парадоксы.
  • Научиться разгадывать софизмы и парадоксы.
  • Провести исследование среди учащихся двух групп разного возраста.
Задачи:
  • привести примеры софизмов и парадоксов.
  • разобрать несколько примеров.
  • понять, как найти ошибку в них.
  • проведя разбор софизмов, сделать вывод.
Надеюсь, что наш реферат будет интересен и принесёт пользу ребятам.

Глава 1. Историческая справка

Софизмом называется умышленно ложное умозаключение, которое имеет видимость правильного. Каков бы ни был софизм, он обязательно содержит одну или несколько замаскированных ошибок. Особенно часто в математических софизмах выполняются «запрещенные» действия или не учитываются условия применения теорем, формул и правил. Иногда рассуждения ведутся с использованием ошибочного чертежа или опираются на приводящие к ошибочным заключениям «очевидности».

Софизмы (греч. sophisma — измышление, хитрость), которые, как уже говорилось, базируются на разнообразных нарушениях логического закона тождества, представляют собой внешне правильные доказательства ложных мыслей. От софизмов следует отличать паралогизмы (греч. paralogismus — неправильное рассуждение) — логические ошибки, допускаемые непроизвольно, в силу незнания, невнимательности или иных причин.

Cчитается что, софизм- всего лишь сбивчивое доказательство, попытка выдать ложь за истину.

Прежде всего, оно совершенно отвлекается от тех исторических обстоятельств, в которых рождались софизмы, и в которых протекала их последующая, нередко богатая событиями жизнь. Исследование софизмов, вырванных из среды их обитания, подобно попытке составить полное представление о растениях, пользуясь при этом только гербариями.

Софизмы существуют и обсуждаются более двух тысячелетий, причем острота их обсуждения не снижается с годами. Если софизмы всего лишь хитрости и словесные уловки, выведенные на чистую воду еще Аристотелем, то долгая их история и устойчивый интерес к ним непонятны.

Когда были сформулированы первые софизмы, о правилах логики не было известно. Говорить в этой ситуации об умышленном нарушении законов и правил логики можно только с натяжкой. Тут что-то другое. Ведь несерьезно предполагать, что с помощью софизма «Рогатый» можно убедить человека, что он рогат таким умозаключением:

- То, что человек не терял, он имеет. Рогов ты не терял, значит они у тебя есть.

При рассмотрении этого софизма уже после создания некоторых правил логики можно чётко видеть, что здесь использована ложная предпосылка. Сомнительно также, что с помощью софизма «Лысый» кто-то надеялся уверить окружающих, что лысых людей нет. И как раз, чтобы подчеркнуть это обстоятельство, софизм формулируется так, что его заключение является заведомо ложным, прямо и резко противоречащим фактам.

Ф. Бэкон сравнивал того, кто прибегает к софизмам, с лисой, которая хорошо петляет, а того, кто раскрывает софизмы, - с гончей, умеющей распутывать следы.

Знаменитые рассуждения древнегреческого философ Зенона "Ахиллес и черепаха", "Дихотомия" и др., называемые обычно апориями (затруднениями), были направлены будто бы против движения и существования многих вещей. Сама идея доказать, что мир - это одна-единственная и к тому же неподвижная вещь, нам сегодня кажется странной. Странной она казалась и древним. Настолько странной, что доказательства, приводившиеся Зеноном, сразу же были отнесены к простым уловкам, причем лишенным в общем-то особой хитрости. Такими они и считались две с лишним тысячи лет, а иногда считаются и теперь. Посмотрим, как они формулируются, и обратим внимание на их внешнюю простоту и незамысловатость.

  1. 1. Примеры логических софизмов:
Кроме математических софизмов, существует множество других. Понять абсурдность таких утверждений проще, но от этого они не становятся менее интересными. Очень многие софизмы выглядят как лишенная смысла и цели игра с языком; игра, опирающаяся на многозначность языковых выражений, их неполноту, недосказанность, зависимость их значений от контекста и т.д. Эти софизмы кажутся особенно наивными и несерьезными.

«Не знаешь то, что знаешь»

«Знаешь ли ты, о чём я хочу тебя спросить?» — «Нет». — «Знаешь ли ты, что добродетель есть добро?» — «Знаю». — «Об этом я и хотел тебя спросить. А ты, выходит, не знаешь то, что знаешь».  

Может ли всемогущий маг создать камень, который не сможет поднять?

Если не может - значит, он не всемогущий. Если может - значит, всё равно не всемогущий, т.к. он не может поднять это камень.

«Отец — собака»

«Эта собака имеет детей, значит, она — отец. Но это твоя собака. Значит, она твой отец. Ты её бьёшь, значит, ты бьёшь своего отца и ты — брат щенят».

Полупустое и полуполное

«Полупустое есть то же, что и полуполное. Если равны половины, значит равны и целые. Следовательно, пустое есть то же, что и полное».

Равен ли полный стакан пустому?

Пусть имеется стакан, наполненный водой до половины. Тогда можно сказать, что стакан, наполовину полный равен стакану, наполовину пустому. Увеличивая обе части равенства вдвое, получим, что стакан полный равен стакану пустому.

Не знаешь то, что знаешь

«Знаешь ли ты то, о чём я хочу тебя спросить?» - «Нет». – «Знаешь ли ты, что добродетель есть добро?» - «Знаю». – «Об этом я и хотел тебя спросить. А ты, выходит, не знаешь то, что знаешь».

Лекарства

«Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит, лекарств нужно принимать как можно больше».

Вор

«Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего».

Рогатый

«Что ты не терял, то имеешь. Рога ты не терял. Значит, у тебя рога».

Апельсин- планета

Земля, Марс и т. д. - круглые. Значит, все планеты круглые. Апельсин тоже круглый, значит апельсин - планета?

Сидящий стоит

«Сидящий встал; кто встал, тот стоит; следовательно, сидящий стоит».

Логический софизм

Вход в парк некоего могущественного князя был запрещен. Если нарушитель попадался, его ожидала смерть, но ему предоставлялось право выбирать между виселицей и обезглавливанием. Он должен был что-то заявить, и если его утверждение было верно, его обезглавливали, а если ложно, то его вешали. Что нужно было заявить нарушителю, чтобы избежать установленного правила и остаться живым?

«Меня повесят, естественно».

Ты не человек

Я человек, ты не я, значит ты не человек.

Самое быстрое не догонит самое медленное

Быстроногий Ахиллес никогда не настигнет черепаху. Пока Ахиллес добежит до черепахи, она продвинется немного вперед. Он быстро преодолеет это расстояние, но черепаха уйдет еще чуточку вперед. И так до бесконечности. Всякий раз, когда Ахиллес будет достигать места, где была перед этим черепаха, она будет оказываться хотя бы немного, но впереди.

Нет конца

Движущийся предмет должен дойти до половины своего пути прежде, чем он достигнет его конца. Затем он должен пройти половину оставшейся половины, затем половину этой четвертой части и т.д. до бесконечности.

Предмет будет постоянно приближаться к конечной точке, но так никогда ее не достигнет.

Куча

Одна песчинка не есть куча песка. Если n песчинок не есть куча песка, то и n+1 песчинка - тоже не куча. Следовательно, никакое число песчинок не образует кучу песка.

Может ли всемогущий маг создать камень, который не сможет поднять?

Если не может - значит, он не всемогущий. Если может - значит, всё равно не всемогущий, т.к. он не может поднять это камень.

Софизм «лгун»

Вполне возможно, что лгун сознается в том, что он лгун. В таком случае он скажет правду. Но тот, который говорит правду, не есть лгун. Следовательно, возможно, что лгун не есть лгун. (Какая ошибка?)

«Софизм Кратила»

Диалектик Гераклит, провозгласив "все течет", пояснял, в одну и ту же реку нельзя войти дважды, когда входящий будет входить в следующий раз, на него будет течь уже другая вода. Кратил сделал и другие выводы: в одну и ту же реку нельзя войти даже один раз, так как пока ты входишь, она уже изменится.

  1. 2. Апории Зенона
"Ахиллес и черепаха", "Дихотомия"

Самое быстрое существо не способно догнать самое медленное, быстроногий Ахиллес никогда не настигнет медлительную черепаху. Пока Ахиллес добежит до черепахи, она продвинется немного вперед. Он быстро преодолеет и это расстояние, но черепаха уйдет еще чуточку вперед.

И так до бесконечности. Всякий раз, когда Ахиллес будет достигать места, где была перед этим черепаха, она будет оказываться хотя бы немного, но впереди.

В "Дихотомии" обращается внимание на то, что движущийся предмет должен дойти до половины своего пути прежде, чем он достигнет его конца. Затем он должен пройти половину оставшейся половины, затем половину этой четвертой части и т.д. до бесконечности. Предмет будет постоянно приближаться к конечной точке, но так никогда ее не достигнет.

Это рассуждение можно несколько переиначить. Чтобы пройти половину пути, предмет должен пройти половину этой половины, а для этого нужно пройти половину этой четверти и т.д. Предмет в итоге так и не сдвинется с места.

Этим простеньким на вид рассуждениям посвящены сотни философских и научных работ. В них десятками разных способов доказывается, что допущение возможности движения не ведет к абсурду, что наука геометрия свободна от парадоксов и что математика способна описать движение без противоречия.

Софизмы типа "Лысый" являются также наглядным примером тех трудностей, к которым ведет употребление неточных или "размытых" понятий.

  1. 1. Логические парадоксы
Парадокс в широком смысле слова — это нечто необычное и удивительное, то, что расходится с привычными ожиданиями, здравым смыслом и жизненным опытом. Логический парадокс — это такая необычная и удивительная ситуация, когда два противоречащих суждения не только являются одновременно истинными (что невозможно в силу логических законов противоречия и исключенного третьего), но еще и вытекают друг из друга, друг друга обуславливают.

Варианты парадокса "Лжеца"

Наиболее известным и, пожалуй, самым интересным из всех логических парадоксов является парадокс "Лжец". Он-то главным образом и прославил имя открывшего его Евбулида из Милета.

Имеются варианты этого парадокса, или антиномии, многие из которых являются только по видимости парадоксальными.

В простейшем варианте "Лжеца" человек произносит всего одну фразу: "Я лгу". Или говорит: "Высказывание, которое я сейчас произношу, является ложным". Или: "Это высказывание ложно".

Если высказывание ложно, то говорящий сказал правду, и значит, сказанное им не является ложью. Если же высказывание не является ложным, а говорящий утверждает, что оно ложно, то это его высказывание ложно. Оказывается, таким образом, что, если говорящий лжет, он говорит правду, и наоборот.

В средние века распространенной была такая формулировка:

- Сказанное Платоном - ложно, - говорит Сократ.

- То, что сказал Сократ, - истина, - говорит Платон

Возникает вопрос, кто из них высказывает истину, а кто ложь?

Парадокс "Лжец" произвел громадное впечатление на греков. И легко понять почему.

Вопрос, который в нем ставится, с первого взгляда кажется совсем простым: лжет ли тот, кто говорит только то, что он лжет? Но ответ "да" приводит к ответу "нет", и наоборот. И размышление ничуть не проясняет ситуацию. За простотой и даже обыденностью вопроса оно открывает какую-то неясную и неизмеримую глубину.

Ходит даже легенда, что некий Филит Косский, отчаявшись разрешить этот парадокс, покончил с собой. Говорят также, что один из известных древнегреческих логиков, Диодор Кронос, уже на склоне лет дал обет не принимать пищу до тех пор, пока не найдет решение "Лжеца", и вскоре умер, так ничего и не добившись.

В средние века этот парадокс был отнесен к так называемым неразрешимым предложениям и сделался объектом систематического анализа.

В новое время "Лжец" долго не привлекал никакого внимания. В нем не видели никаких, даже малозначительных затруднений, касающихся употребления языка. И только в наше, так называемое новейшее время развитие логики достигло наконец уровня, когда проблемы, стоящие, как представляется, за этим парадоксом, стало возможным формулировать уже в строгих терминах.

Теперь "Лжец" - этот типичный бывший софизм - нередко именуется королем логических парадоксов. Ему посвящена обширная научная литература. И, тем не менее, как и в случае многих других парадоксов, остается не вполне ясным, какие именно проблемы скрываются за ним и как следует избавляться от него.

3.1. Физические софизмы и парадоксы.

К пристани причаливают две одинаковые лодки. Лодочники подтягиваются к берегу с помощью веревок. Другой конец первой веревки привязан к столбу на пристани; за противоположный конец второй веревки тянет матрос, стоящий на пристани. Все трое прилагают одинаковые усилия. Какая лодка причалит раньше?

Ответ.

Обе лодки причалят одновременно.С какой силой лодочники тянут за один конец веревки, с такой же силой второй конец веревки действует на столб и на матроса. Другими словами, столб "тянет" конец веревки с такой же силой, с какой ее тянет матрос, стоящий на пристани.

Все тела падают на землю. Облака состоят из маленьких капелек воды, значит они должны падать на землю. Однако этого не происходит. Почему? При испытании реактивного снаряда, установленного в хвосте самолета для защиты его от нападения сзади, был обнаружен удивительный факт: при пуске снаряд разворачивался и догонял самолет. Как можно объяснить это явление? 4.1. Различие и сходство между софизмами и логическими парадоксами

Внешне парадоксы похожи на софизмы, поскольку тоже приводят рассуждения к противоречиям. Главное же различие между ними, как остроумно заметил писатель Даниил Гранин, заключается в том, что софизм - это ложь, обряженная в одежды истины, а парадокс - истина в одеянии лжи. Это, конечно, образное сравнение, но оно довольно точно схватывает суть проблемы. Хотя в действительности связь софизма и парадокса более тонкая и сложная. Парадокс может быть следствием, заключением некоторых софизмов, то есть из корректного по форме, но ложного по содержанию рассуждения может следовать выражение, которое можно назвать некорректным по форме, но истинным по содержанию. Парадоксальный вывод обязывает искать источник парадокса, заставляет выбираться из круга, в котором оказалось наше рассуждение, и искать другой путь. Например, псевдоистину содержит суждение с двойным отрицанием: «Я не знал, что он не брал», так как двойное отрицание является утверждением. Или: «Нельзя не верить потерпевшему, - говорит обвинитель, - ибо невозможно измыслить столь чудовищное обвинение». «Невозможно, согласен, - возражает защитник, - но если невозможно измыслить, как же можно было совершить?».

5.1. Исследовательская часть

Чтобы показать и подтвердить значимость софизмов и парадоксов в жизни, мы провели исследовательскую работу в сфере учебной деятельности. Данная работа была направлена

1. на развитие умения находить ошибку, анализировать и устранять ее;

2. на развитие логического мышления;

3. на формирование математической грамотности учащихся.

Исследование проводилось среди учащихся двух групп: первая группа – ученики 6 класса, а вторая группа – ученики 10 класса.

В шестом классе был проведен урок – презентация на развивающей математике, посвященный софизмам. Затем по этой теме была проведена самостоятельная работа.

В десятом классе просто ознакомление с понятием софизма и презентация по данной теме. Закончилось самостоятельной работой.

По итогам самостоятельных работ мы увидели, что процент учащихся, которые справились с работой выше, чем тех учащихся, которые с работой не справились во всех группах.

Все полученные данные мы оформили в виде диаграмм, которые наглядно показали нам различия по уровню усвоения темы самостоятельной.

Таким образом, проанализировав полученные результаты, мы сделали вывод, что ученики, разобравшие данную тему с легкостью находили ошибки. Ученики, не получившие данной информации, допустили различные ошибки по данной теме.

Группа учеников 6 класса Группа учеников 10 класса

Заключение

Приступив писать заключение, мы вспомнили о парадоксе описания чистого листа. Это описание бесконечно, как песенка «У попа была собака, он ее любил…». Так же бесконечно хочется писать о парадоксе. И видимо, знание о парадоксе будет постоянно меняться, и никто никогда не скажет: «Я знаю о парадоксе все». И от этого наша тема становится еще более притягательной. Мы рассмотрели наиболее интересные софизмы и парадоксы, еще больше их не рассмотрели.

В своей работе мы доказали, что софизмы и парадоксы являются не просто интеллектуальным мошенничеством, а важным двигателем человеческой мысли. Показали практическое применение парадоксов и их актуальность и в наше время. Рассмотрев определения и примеры софизмов и парадоксов, выяснили, что грань между софизмом и парадоксом очень тонка, многие парадоксы в разных источниках называют софизмами, а софизмы парадоксами.

Научились разгадывать некоторые софизмы и парадоксы.

Провели исследование среди учащихся двух групп разного возраста, на которых выяснили, что детям интересна эта тема, как и нам.

Тема нашей работы далеко не исчерпана. Мы рассмотрели лишь некоторые, самые известные примеры софизмов и парадоксов. На самом деле их намного больше. Мы продолжим изучение этой темы в дальнейшем.

Список литературы.

  1. «Большая энциклопедия Кирилла и Мефодия 2004г
  2. А.Г. Мадера, Д.А. Мадера «Математические софизмы» Москва, «Просвещение», 2003г.
  3. Ф.Ф. Нагибин, Е.С. Канин «Математическая шкатулка» Москва, «Просвещение», 1988г.
  4. М.Е. Тульчинский Занимательные задачи-порадоксы.
  5. Я познаю мир: Детская энциклопедия: Математика/Составители А.П. Савин, В. В. Станцо, А.Ю. Котова: под общей редакцией О.Г.Хинн.-М.:АСТ,1995.
Интернет ресурсы:
  1. http://stepanov.lk.net/gardner/hex/hex14.html
  2. http://nsportal.ru/ap/ap/drugoe/sofizmy-i-paradoksy-v-matematike
  3. http://www.coolreferat.com/%D0%A1%D0%BE%D1%84%D0%B8%D0%B7%D0%BC%D1%8B_%D0%B8_%D0%BF%D0%B0%D1%80%D0%B0%D0%B4%D0%BE%D0%BA%D1%81%D1%8B
  4. http://teacher.msu.ru/child/proforientir/math/paradox
  5. http://ru.wikipedia.org/wiki/%D1%EE%F4%E8%E7%EC
  6. http://www.uchportal.ru/load/25-1-0-32713

скачать файл

klevoz.ru

Софизмы. Понятие, примеры

Философия Софизмы. Понятие, примеры

просмотров - 218

ЛЕКЦИЯ № 23. Софизмы. Логические парадоксы

Опровержение через аргументы и форму

Другие названия этих способов опровержения – критика аргументов и несостоятельность демонстрации.Как видно из названия, в первом случаеопровержение направлено не на сам тезис, а на подтверждающие его аргументы. Конечно, само по себе отрицание аргументов не значит с достоверностью, что ложен сам тезис, так как из истинного тезиса бывают сделаны ложные умозаключения. Суть данного способа состоит, таким образом, не в том, чтобы доказать ложность тезиса, но в том, чтобы выявить, показать его недоказанность.

Любой недоказанный тезис не принимается на веру, он нуждается в доказательстве. По этой причине критика аргументов может быть достаточно эффективным способом опровержения. Это скорее способ достижения истины, а не эффективного ведения спора, так как способствует прежде всœего тому, чтобы оппонент смог доказать свое истинное суждение. Ложное в таком случае будет отвергнуто.

Отсутствие истинных аргументов в доказательстве может происходить из ложности доказываемого тезиса, малой осведомленности оппонента о предмете, дефицита информации об этом предмете вообще.

При использовании этого способа опровержения не следует забывать, что нельзя заключать с достоверностью (о чем уже упоминалось выше) от отрицания основания к отрицанию следствия.

Другим видом опровержения выступает несостоятельность демонстрации.Как и в первом случае, в процессе такого опровержения не затрагивается тезис, т. е. его ложность не доказывается. Выявляются лишь ошибки, допущенные в процессе доказательства оппонентом. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, аналогично тому, как и при критике аргументов, показывается факт недоказанности тезиса. Рассматриваются в основном аргументы, приведенные в качестве доказательства. При этом задача опровержения или подтверждения тезиса не возлагается на опровергающего. Он лишь выявляет недостатки доказательства оппонента͵ вынуждая последнего менять аргументы, исправлять допущенные ошибки, возникающие, как правило, вследствие нарушения того или иного правила дедуктивных умозаключений.

В процессе доказательства может быть сделано поспешное обобщение, если при заключении во внимание была принята только та часть фактов, которая говорит в пользу сделанного заключения. В этом случае также крайне важно указать оппоненту на допущенную ошибку.

Раскрывая данный вопрос, крайне важно сказать, что любой софизм является ошибкой. В логике выделяют также паралогизмы.Отличие этих двух видов ошибок состоит в том, что первая (софизм) допущена умышленно, вторая же (паралогизм) – случайно. Паралогизмами изобилует речь многих людей. Умозаключения, даже, казалось бы, правильно построенные, в конце искажаются, образуя следствие, не соответствующее действительности. Паралогизмы, несмотря на то что допускаются неумышленно, всœе же часто используются в своих целях. Можно назвать это подгонкой под результат. Не осознавая, что делает ошибку, человек в таком случае выводит следствие, ĸᴏᴛᴏᴩᴏᴇ соответствует его мнению, и отбрасывает всœе остальные версии, не рассматривая их. Принятое следствие считается истинным и никак не проверяется. Последующие аргументы также искажаются для того, чтобы больше соответствовать выдвинутому тезису. При этом, как уже было сказано выше, сам человек не сознает, что делает логическую ошибку, считает себя правым (более того, сильнее подкованным в логике).

В отличие от логической ошибки, возникающей непроизвольно и являющейся следствием невысокой логической культуры, софизм является преднамеренным нарушением логических правил. Обычно он тщательно маскируется под истинное суждение.

Допущенные умышленно, софизмы преследуют цель победить в споре любой ценой. Софизм призван сбить оппонента с его линии размышлений, запутать, втянуть в разбор ошибки, которые не относятся к рассматриваемому предмету. С этой точки зрения софизм выступает как неэтичный способ (и при этом заведомо неправильный) ведения дискуссии.

Существует множество софизмов, созданных еще в древности и сохранившихся до сегодняшнего дня. Заключение большей части из них носит курьезный характер. К примеру, софизм «вор» выглядит так: «Вор не желает приобрести ничего дурного; приобретение хорошего есть дело хорошее; следовательно, вор желает хорошего». Странно звучит и следующее утверждение: «Лекарство, принимаемое больным, есть добро; чем больше делать добра, тем лучше; значит, лекарство нужно принимать в больших дозах». Существуют и другие известные софизмы, к примеру: «Сидящий встал; кто встал, тот стоит; следовательно, сидящий стоит», «Сократ – человек; человек – не то же самое, что Сократ; значит, Сократ - ϶ᴛᴏ нечто иное, чем Сократ», «Эти кутята твои, пес, отец их, тоже твой, и мать их, собака, тоже твоя. Значит, эти кутята твои братья и сестры, пес и сука – твои отец и мать, а сам ты собака».

Такие софизмы нередко использовались для того, чтобы ввести оппонента в заблуждение. Без такого оружия в руках, как логика, соперникам софистов в споре было нечего противопоставить, хотя зачастую они и понимали ложность софистических умозаключений. Споры в Древнем мире зачастую заканчивались драками.

При всœем отрицательном значении софизмов они имели обратную и гораздо более интересную сторону. Так, именно софизмы стали причиной возникновения первых зачатков логики. Очень часто они ставят в неявной форме проблему доказательства. Именно с софизмов началось осмысление и изучение доказательства и опровержения. По этой причине можно говорить о положительном действии софизмов, т. е. о том, что они непосредственно содействовали возникновению особой науки о правильном, доказательном мышлении.

Известен также целый ряд математических софизмов. Для их получения числовые значения тасуются таким образом, чтобы из двух разных чисел получить одно. К примеру, утверждение, что 2 х 2 = 5, доказывается следующим образом: по очереди 4 делится на 4, а 5 на 5. Получается результат (1:1) = (1:1). Следовательно, четыре равно пяти. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, 2 х 2 = 5. Такая ошибка разрешается достаточно легко – нужно лишь произвести вычитание одного из другого, что выявит неравенство двух этих числовых значений. Также опровержение возможно записью через дробь.

Как раньше, так и теперь софизмы используются для обмана. Приведенные выше примеры достаточно просты, легко заметить их ложность и не обладая высокой логической культурой. При этом существуют софизмы завуалированные, замаскированные так, что отличить их от истинных суждений бывает очень проблематично. Это делает их удобным средством обмана в руках подкованных в логическом плане мошенников.

Вот еще несколько примеров софизмов: «Для того чтобы видеть, нет крайне важности иметь глаза, так как без правого глаза мы видим, без левого тоже видим; кроме правого и левого, других глаз у нас нет, в связи с этим ясно, что глаза не являются необходимыми для зрения» и «Что ты не терял, то имеешь; рога ты не терял, значит, у тебя рога». Последний софизм является одним из самых известных и часто приводится в качестве примера.

Можно сказать, что софизмы вызываются недостаточной самокритичностью ума, когда человек хочет понять пока недоступное, не поддающееся на данном уровне развития знание.

Бывает и так, что софизм возникает как защитная реакция при превосходящем противнике, в силу неосведомленности, невежества, когда спорящий не проявляет упорство, не желая сдавать позиций. Можно говорить о том, что софизм мешает ведению спора, однако такую помеху не стоит относить к значительным. При должном умении софизм легко опровергается, хотя при этом и происходит отход от темы рассуждения: приходится говорить о правилах и принципах логики.

oplib.ru


Смотрите также