Древние металлы человечества. Наука о металле, металлы в истории развития человечества. Творцы науки о металлах.
История современного города Афины.
Древние Афины
История современных Афин

Роль металлов в истории человечества. Применение металлов и сплавов. Древние металлы человечества


Металлы в истории человечества. Я познаю мир. Сокровища Земли

Металлы в истории человечества

Первым металлом, который узнал и стал применять человек, было золото. Потом наста- -.на очередь меди и, наконец, железа. Золото стало для человека металлом-первенцем не потому, что его так много на Земле и тут и там спотыкаешься о золотые горы. Золота на Земле и в земле очень и очень мало в сравнении с запасами железа, алюминия и меди. Но оно встречается в самородном виде, блестит, привлекая внимание. Золото легко обрабатывается, и, наконец, самое главное — оно вечное, сохраняется сколь угодно долго.

Человек издревле занимался собирательством: рвал плоды с деревьев, искал целебные травы, гнезда птиц и норы зверей, копал съедобные корешки, так почему бы и золотинки не пособирать? Золото вошло в человеческий обиход около 10 тысяч лет назад и использовалось тогда только для украшений и предметов культа.

Вторым металлом, который узнал и полюбил человек, стала медь. Она тоже известна в самородном виде, но основное ее количество входит в состав различных минералов. Меди на Земле много больше, чем золота, и она использовалась более широко. Из нее делали топоры и ножи, другие орудия древнего труда. Медный век охватывает в истории человечества время 6000-5000 лет назад.

Медный век человечества сменился эпохой бронзы. Бронза — это сплав меди со свинцом, оловом и другими металлами. Возможно, бронзу человек получил впервые случайно, чисто опытным путем: выплавлял медь из разных руд, и сварилось что-то новенькое. Бронза прочнее чистой меди, и искусство ее получения высоко ценилось в древние времена. Она довольно быстро распространилась по всем закоулкам человеческой цивилизации.

Эпоха бронзы началась 6000 лет назад и длилась около 3000 лет.

На смену бронзе пришло железо — ныне самый распространенный и необходимый человеку металл. В самородном виде железо практически не встречается: его надо выплавлять из руды. А что такое руда? Скопление определенных минералов. Из них теми или иными способами можно получить металл или сплав металлов. Руды различают по составу минералов, технологическим свойствам, содержанию полезных компонентов, примесей.

Судьба металлов и сплавов в истории была переменчива. Например, алюминий, полученный в виде чистого металла лишь в XIX веке, вначале использовался для изготовления ювелирных изделий и ценился выше серебра, а сегодня из него изготавливают самолеты и дешевые походные кровати.

Из уральской платины в 1828-1845 годах чеканили монеты достоинством 3, 6 и 12 рублей, а потом весь запас платины продали в Англию за ненадобностью. А ведь платина сегодня — один из ценнейших металлов, благородных и уважаемых. Сегодня российские платиновые монеты XIX века — заветная мечта коллекционеров. В честь XX Московской Олимпиады (1980 г.) выпустили новые платиновые монеты достоинством 150 рублей.

Серебро в начале своей карьеры в мире людей ценилось выше золота.

Из свинца в Древнем Риме изготавливали трубы для водопровода. А сегодня свинец признан как ядовитый тяжелый металл.

Долгое время не могли найти применение урану, многим редким и редкоземельным элементам. Но с того самого дня, как был открыт первый урановый рудник, уран стал задачей номер один для многих геологов мира. Уран пытались найти во всех мыслимых и немыслимых природных образованиях: почвах, водах, растениях, горных породах и минералах. И конечно, нашли. Урановой рудой, оказывается, могут быть ископаемые угли, фосфориты, кости давно вымерших рыб.

Один исторический курьез был связал с первыми попытками найти применение сурьмяной руде — минералу антимониту. Его в средние века в Италии стали помногу добавлять в пищу свиньям, те быстро жирели, набирая вес. То-то хозяева радовались! Но когда настоятель одного монастыря попробовал добавлять антимонит в пищу монахов, то многие из них отравились и умерли. Отсюда минерал и получил свое название «противомонаший».

Познакомимся поближе с другими рудами, которые ищут настойчивые геологи и которые так необходимы для жизни человечества.

Поделитесь на страничке

Следующая глава >

info.wikireading.ru

Наука о металле, металлы в истории развития человечества. Творцы науки о металлах.

 

Что такое металлургия и ее роль в обществе.Состояние и значение современной философии металлургии определяется местом данной науки в обществе, в мировоззрении, а также набором ее внутренних, исторически сформированных понятий и проблем. Металлургия является прикладной наукой. Как и всякая прикладная наука, она нацелена на разработку способов применения, полученных фундаментальной наукой знаний, объективных законов мира для удовлетворения потребностей и интересов людей. Металлургия (от греческого metallurgeo) – в первоначальном значении – искусство извлечения металлов из руд. В современном, более широком смысле, металлургия – область науки и техники и отрасль промышленности, занимающаяся извлечением металлов из руд и переработкой металлоотходов и изготовлением из полученных металлов и сплавов разнообразных металлических изделий. Сегодня металлургическое производство представляет сложный комплекс разнообразных технологий, которые можно разделить на три этапа:

1. Подготовка добытой из недр руды, с целью повышения ее технических показателей при ее дальнейшей металлургической переработке;

2. Извлечение металла из руды методами высоко – и низкотемпературной металлургии; очистка чернового металла от примесей, производство сплавов;

3. Изготовление из металлов и сплавов изделий металлургическими способами и улучшение их свойств путем термической, термомеханической, термохимической обработки.

Металлургия является основой экономического и оборонного могущества государства. Развитию этой решающей отрасли народного хозяйства отводиться должное место. Металлургическое производство возникло на заре развития человеческого общества. Человек познакомился с металлом в незапамятные времена. Металлы являются надежными помощниками человека. Вместе всегда человек и металл.

Современную жизнь без них невозможно даже представить.

Металл и сегодня является фундаментом созидания, основным материалом, которым пользуется человек. Тысячи лет назад люди научились пользоваться металлами и добывать их из природных соединений. Почти три четверти менделеевской таблицы химических элементов, из которых построено все существующее во Вселенной, составляют металлы. Десятки из них широко применяются в технике и быту. Остальные с каждым годом все глубже внедряются в практику. Еще большее распространение получили сплавы, состоящие из нескольких металлов и неметаллических элементов. Как правило, такие сплавы обладают свойствами, превосходящими свойства чистых металлов.

Металлы легко отличить от неметаллов характерным ярким серебристым или золотистым цветом, блеском их поверхности. Металлы пластичны, их куют, прокатывают, штампуют. Кроме того, металлы хорошо проводят тепло и электрический ток. Это так называемые физические свойства металлов. По химическим свойствам оксиды металлов обладают щелочными свойствами, и при соединении с водой они образуют щелочные растворы, а оксиды неметаллов имеют кислотные свойства и, соединяясь с водой, образуют кислоты.

Все это было хорошо известно еще более 200 лет тому назад во времена М. В. Ломоносова. А вот причины такого различия свойств металлов и неметаллов были найдены значительно позже, после того, как было открыто электронное строение атомов. Напомним, что электрон был открыт лишь в 1895 году.

Каждому элементу Д. И. Менделеев еще в 1869 году приписал определенный атомный номер и поместил его в периодическую систему с этим номером, ничего еще не зная об электронах.

 

 

Позже выяснилось, что номер элемента точно совпадает с числом электронов, вращающихся по нескольким орбитам. У всех металлов наружные электронные орбиты являются не­доукомплектованными. По ним вращаются, как правило, один, два, три и в редких случаях - четыре электрона. В то же время у неметаллов наружные электронные орбиты, наоборот, полностью или почти полностью укомплектованы.

Переходом наружных электронов от одних атомов к другим и было объяснено явление электрического тока. Числом электронов на наружной орбите было объяснено свойство валентности металлов. Электронное строение атомов дало ключ к объяснению таких явлений, как ферромагнетизм, полиморфизм, потенциал ионизации. Все эти вопросы получили отражение в разработанной советскими физиками теории металлического состояния.

Первые пять мест в земной коре на глубине до 1 км (по массе веществав %) занимают элементы, представленные в таблице 1.

 

Таблица 1 - Содержание основных элементов в земной корена глубине до 1 км (по массе веществав %) и их температура плавления (о С)

 

О2 Si Al Fe Ca Mg Ti Cu Ni Sn
Zn
Pb Ag Au
46,6 27,7 8,1 5,0 3,4 2,1 0,6 0,01 0,004 0,0016 10-5 5·10-7
-
                             

 

На долю алюминия, железа и всех остальных 77 металлов приходится меньше одной четвертой части массы земной коры. Парадоксально, но факт, что металл, которого больше всего в земной коре был открыт намного позже большинства других. В 1825 году датчанин Эрстед и в 1827 году немец Велер сумели получить первые крупицы этого металла и только в 1864 году французскому химику Сент-Клер Девилю удалось получить первый промышленный алюминий. Через 11 лет русский химик Н.Н. Бекетов создал более экономичный способ получения алюминия из глинозема, который применяли конца XIX века. Но полученный по этому способу алюминий был по стоимости равноценен золоту.

Сколькими металлами располагал древний человек? Наряду с золотом, серебром, медью, оловом и железом люди давно узнали свинец, ртуть и сурьму. По поводу платины мнения историков расходятся. Некоторые утверждают, что этот благородный металл обрабатывали в Египте еще в 1500 г. до н. э. Во всяком случае, достоверно известно, что индейцы в Америке давно были знакомы с платиной, и оттуда ее испанцы доставляли в Европу.

Мягкий и относительно легкодоступный свинец в древности использовали для разных целей. Известно, например, что из гнутых свинцовых листов изготовляли трубы, сваривая продольные швы и соединительные муфты. Римляне при сооружении своих знаменитых водопроводов даже ввели стандартизацию свинцовых труб по диаметру и поперечному сечению. Это упростило расчет и проектирование водопроводной сети. Древние строители также использовали свинец для закрепления каменных плит и заделки швов. Из свинца чеканили монеты, медали и печати, изготовляли грузила для рыболовной снасти и якоря для судов. На тонких свинцовых пластинках гравировали текст и, сшивая их, делали свинцовые книги. Предположительно, первые сведения о свинце происходят из Индии. Свинцовые чушки в форме кирпичей служили предметом торговли, они упоминаются и в списках товаров, которые египетские фараоны получали в качестве дани. На островах Средиземного моря, в Италии, на побережье Греции и во многих местах Западной и Центральной Европы сохранились следы античных свинцовых рудников. Римляне называли свинец и олово одним и тем же словом - «плюмбум». Правда, они различали «плюмбумальбум» (белый) и «плюмбумнигрум» (черный), но часто путали оба металла. Нередко «плюмбум» называли сплавы свинца и олова.

Гораздо меньше, чем свинец, была известна сурьма - серебристо-белый, с сильным блеском, очень хрупкий металл. В Вавилоне из нее изготовляли сосуды уже в 3000 г. до н. э. Однако гораздо шире использовали не металлическую сурьму, а ее соединения, в частности в косметике. Очевидно, сурьма служила и как легирующий элемент при выплавке сурьмянистых бронз, которые обладают превосходными литейными свойствами (хорошо заполняют форму). Много позже, в период увлечения алхимией, сурьма приобрела особое значение, прежде всего потому, что в расплавленном виде она хорошо растворяет многие другие металлы - «пожирает» их. В качестве символа этого металла алхимики выбрали волка.

Ртуть римляне называли «аргентумвивум» - живое серебро. Примерно то же означает и современное немецкое название ртути Quecksilber. Этот удивительный металл - единственный, который при нормальных температурах остается в жидком состоянии. Ртуть нетрудно получить из ее природного соединения с серой - широко известной киновари. Первое письменное упоминание о ртути принадлежит Аристотелю и относится примерно к 350 г. до н.э., но, как показывают археологические находки, она была известна много раньше. Для каких целей служил этот металл? В древности ртуть широко применяли для золочения. Золото легко растворяется в ртути и образует с ней сплав - золотую амальгаму, которую наносят на обрабатываемое изделие. Затем его нагревают, ртуть испаряется, а на изделии остается слой золота. В наше время от такого процесса огневого золочения отказались, потому что пары ртути чрезвычайно вредны для здоровья. Растворимость золота в ртути можно использовать также и при его извлечении, скажем, из золототканой одежды. Подобный процесс был положен в основу разработанного в XVI в. способа извлечения различных металлов - так называемого амальгамирования (или амальгамации): измельченную руду обрабатывают ртутью, в которой металлы растворяются; затем ртуть выпаривают, а металлы остаются в твердом виде.

Изображение, обнаруженное в гробнице фараона Мереруба (VIдинастия Древнего царства, 2315-2190гг. до н.э.) свидетельствует о том, что технология переработки металлов в Египте достигла высокого уровня еще четыре тысячелетия назад.

Бронзовое литье в Египте (около 1450 г. до н.э.). Изображение из гробницы чиновника времен XVIII династии Нового царства.

 

В средние века металлурги освоили добычу и переработку многих металлов: золота, серебра, меди, железа, олова, свинца, ртути и сурьмы. Помимо бронзы и стали были известны сплавы свинца и олова, а наряду с оловянистыми начали применяться сурьмянистые и мышьяковистые бронзы. Наконец, следует упомянуть и о таком давно известном к тому времени медном сплаве, как латунь. Если медь легировать цинком, то она по виду будет на­поминать золото. Латунь применялась еще во времена Гомера (VIII в. до н. э.). По-видимому, моссиноики - народ, обитавший на Черном море - первыми стали сплавлять медь с цинковой рудой, получая таким образом латунь. От них и происходит немецкое слово messing, означающее латунь. При императоре Ав­густе (63 г. до н. э.—14 г. н. э.) в Риме чеканили латунные монеты. Однако тогда еще не было известно, что латунь содержит другой металл - цинк. Европа узнала о цинке только в XVIII в. от металлурга из Фрейберга- Иоганна Фридриха Хенкеля (1675-1744). Сегодня мы знаем, что китайцам этот металл был известен раньше.

Таким образом, средневековые алхимики имели дело с 6-7 металлами. М. В. Ломоносову было известно уже 13 металлов. Когда Д.И. Менделеев (1869 г.) составил свою знаменитую периодическую систему элементов, в ней насчитывалось 92 места для элементов, но известно было лишь 63. Из этих 63 элементов 22 были неметаллами, и пять - полуметаллами, к которым отнесли мышьяк, олово, сурьму, висмут и германий. Таким образом, в 1869 году было известно уже 36 металлов. В настоящее время твердо установлено существование 117 элементов, в том числе металлов - 79. Из 117 химических элементов 89 обнаружены в природных объектах.

Второе место среди металлов в земной коре занимает широко распространенный на нашей планете металл - железо. К сожалению, железо, так же как и алюминий, и все остальные металлы не содержится в земной коре в чистом виде. Оно окислено. А оксиды железа смешаны с рядом оксидов других элементов, образующих так называемую пустую породу. Поэтому, добывая железо, приходится руду переплавлять, оксиды других металлов переводить в шлак, а железо восстанавливать из его оксида. Задача нелегкая, но, тем не менее, именно железо, а не какой-либо другой металл, стало основой технического прогресса во всем мире. Чем это объяснить?

Во-первых, распространенностью железа в природе, во-вторых, относительной легкостью восстановления его из оксидов по сравнению с другими металлами, в-третьих, малой стоимостью и. в-четвертых, удивительно широким спектром свойств, которыми обладают железные сплавы. Ученый – минералог академик А. Е. Ферсман писал: «Железо не только основа всего мира, самый главный металл окружающей нас природы, оно основа культуры и промышленности, оно орудие войны и мирного труда. И трудно во всей таблице Менделеева найти другой такой элемент, который был бы так связан с прошлым, настоящим и будущими судьбами человечества».

Археологи утверждают, что человек научился получать железо с незапамятных времен. Применение метеоритного железа - первый шаг по пути отказа от бронзы. Железо побеждает бронзу.

С этого начался переход от бронзового века к железному. Железо побеждает бронзу. Бронза, как известно, сохраняется в земле, точнее - в ее культурном слое, тысячелетия. Железо, напротив, довольно быстро возвращается в первозданное состояние - ржавление превращает его снова в своего рода руду, т.е. в соединения железа с кислородом. Тогда почему же можно говорить о применении железа в незапамятные времена? Основанием для этого служат остатки, говоря современным языком, металлургического оборудования, которым пользовались наши предки, отходы древнего «металлургического производства» в виде шлака, неиспользованное сырье в виде угля и т.д.

Ранний железный век в Центральной и Западной Европе получил название «гальштатский» по месту основных находок материальных свидетельств этого периода и продолжался сVIII поVвек до н.э. С этого времени начинается собственно железный век, практически его расцвет, когда железо в Европе стало важнейшим и наиболее распространенным металлом, применяемым в хозяйственной и военной деятельности человека. Это период с V до конца I в. до н.э.. называемый по месту основных находок. Так, в период Латонской культуры (Швейцария) были достигнуты большие успехи в развитии металлургии железа, о чем свидетельствуют их наиболее совершенные металлургические печи. Доказано, что они применяли уже печи шахтного типа и дутьевые мехи, т.е. кричные горны.

Внешний вид сыродутного горна
Конечно, уровень мастерства древнего «сталеделателя» поначалу был не очень высок, а костровая металлургия давала не железо, а, скорее, хрупкий чугун. Позже чугун стали нагревать в горне вместе с куском железной руды, что позволило превратить этот хрупкий чугун в ковкий металл - в сталь, вполне пригодную для изготовления нужных человеку предметов быта, орудий охоты, войны. Костровая металлургия сменилась горновой. Много веков существовал сыродутный способ получения железа. Сыродутный горн стал первым металлургическим агрегатом, специально предназначенным для производства железа из руд. Железная руда нагревалась в небольших горнах - ямах, вырытых в земле и выложенных обожженной глиной. В дальнейшем появились и наземные печи - домницы.
Процесс плавки в сыродутном горне: 1- древесный уголь; 2- руда; 3- крица

 

В качестве топлива использовался древесный уголь. При нагревании происходило восстановление железа из его окислов с помощью углерода топлива. На дне горна образовывалась крица - раскаленный ком железа, по структуре напоминающий губку.

Гравюра из книги Агриколы «О металлах».

Получение кричного железа в сыродутных горнах.

Его проковывали под молотом для уплотнения и выдавливания шлаков. Производительность таких сыродутных горнов была незначительной. Вес железного кома - крицы редко превышал 20-25 кг. Появление в середине XIV в. доменных печей открыло возможности для значительного увеличения выпуска металла. Демидовская металлургия знала кричное железо, домницы, а потом домны, литейный чугун, прокатное производство.

Производство железа на территории нашей страны было известно еще в доисторические времена. Археологические раскопки древних поселений в центральной части СССР, на Урале, Украине, в Белоруссии, Закавказье и в ряде других районов показывают, что наши далекие предки уже 2,5-3 тысячелетия тому назад умели получать железо из руд и изготовлять из него оружие, орудия труда и предметы домашнего обихода.

Генри Бессемер (1813-1898).
В конце XVIII в. англичане вырвались вперед: появилась тигельная плавка стали. Новая технология предусматривала ведение процесса под силикатным шлаком, т.е. под битым бутылочным стеклом (мы сказали бы теперь, что это был кислый сталеплавильный агрегат). Нужно было найти замену древесному углю: развитие металлургии привело в свое время к тому, что в Англии и Ирландии леса были практически уничтожены. Еще во времена Кромвеля здесь предпринимались попытки выплавлять доменный чугун сперва на каменном угле, которым богата Англия, а потом и на каменноугольном коксе. В конечном счете, двести лет тому назад была создана, как мы говорим теперь, коксовая доменная металлургия. Появление доменной печи и бессемеровского конвертера, которым ознаменовалась новая эра в черной металлургии, одновременно означало и конец тысячелетней эпохи «чистой» стали и начало нового периода - «грязной» стали. Основателем сталеплавильного производства следует считать Генри Бессемера (1813-1898).

При продувке воздухом расплавленный чугун не только не охлаждается, как предполагали прежде, но, напротив, его температура возрастает настолько, что ванна остается жидкой, хотя сталь, которая образуется из чугуна благодаря продувке, имеет более высокую температуру плавления.

Сидней Джилкрист Томас (1850-1883)
Конвертер - будь то бессемеровский или томасовский - позволяет за 20 мин превратить в сталь до 20 т чугуна (Для производства такого же количества стали в горне способом кричного передела потребовалось бы три недели, а в пудлинговой печи - неделя. Англия благодаря изобретениям Бессемера и Сименса упрочила свое положение ведущей промышленной державы. Уже в 1870 г. производство стали в Англии превысило 5 млн. т и продолжало быстро расти. Таким образом, за столетие был достигнут примерно стократный прирост: во второй половине XVIII веке в Англии производилось за год порядка 50-100 тыс. т стали.

 

Свои первые опыты Бессемер производил в закрытом тигле, продувая расплав воздухом через введенную сверху трубу.
Томасовский процесс отличается от бессемеровского составами загружаемого чугуна (содержанием в нем фосфора), шлака и футеровки конвертера

 

 

Доменные печи существуют и сегодня, а последние в нашей стране бессемеровские конвертеры Днепровского металлургического завода

Конвертерное производство стали в XIX веке
им. Дзержинского потушены - в 1983 г. На их место пришли современные конвертеры с комбинированной продувкой - сверху и снизу. Древние металлурги действительно умели делать из булатной стали мечи, превосходные латы и кольчуги. Они «выжали» все, что можно было, из углеродистой стали, т.е. из сплавов железо - углерод. Но им и в мечтах не могло представиться, что сделает человек из железа, если он введет в него помимо (а, то и вместо!) углерода различные легирующие примеси. Легирование железа открыло новую эру в металлургии, а значит, и в сфере потребления ее продукции. Все эти удивительные изобретения были сделаны почти столетие назад. Они не утратили своего выдающегося значения в наши дни, не утратят и в обозримом будущем. Нам остается лишь преклоняться перед древними мастерами,

 

отнюдь не владевшими теорией металлургических процессов, но умевшими тысячу лет тому назад ковать мечи из непревзойденной и сегодня булатной (дамасской) стали, готовить латы и шлемы, удивительной вязки стальные кольчуги. В XVI-XVII вв. на Руси создаются первые железоделательные заводы. Они строятся вблизи старинных русских городов - Тулы, Каширы, Серпухова, в Новгородском крае и других районах страны. Уже к концу XVII века их суммарная производительность достигает 150 тыс. пудов. В начале XVIII в. отечественная металлургия развивается еще более быстрыми темпами. Это была славная эпоха Петра I, которой отлично понимал, что для решения поставленных им задач - укрепить Русское государство, завоевать выходы к морям, «прорубить окно в Европу» - потребуется немало металла, чтобы обеспечить сооружение кораблей и производство вооружения. Однако разведанных рудных запасов и лесных ресурсов Центра России было явно недостаточно. Нужно было создать новую металлургическую базу страны. Ею явился Урал, с его богатейшими запасами высококачественной железной руды и древесноугольного топлива. При Петре I Урал становится ведущим горнометаллургическим районом России. Туда направляются специалисты с тульских и других старых заводов; привлекаются опытные заграничные мастера. Один за другим на Урале возникают крупные по тому времени железоделательные заводы - Каменский, Невьянский, Уктусский, Алапаевский и др. Одновременно продолжается расширение и строительство предприятий в центральной части страны, близ Москвы, Липецка, Воронежа, в северо - западных районах. Эти заводы впоследствии сыграли большую роль в материальном обеспечении русской армии и флота. Достаточно сказать, что только один первенец уральской металлургии - Каменский завод с 1702 по 1709 г. выпустил 854 артиллерийских орудия и свыше 27 тыс. пудов снарядов к ним. Они помогли русскому народу одержать победу в решающем сражении со шведами под Полтавой. В петровскую эпоху выдвинулось немало талантливых людей, поставивших своей целью изучить природные богатства русской земли, создать рудники, построить заводы, укрепить экономическое могущество Родины.

Усилия металлургов петровской эпохи не пропали даром. Выплавка чугуна и производство железа росли в первой четверти XVIIIв. стремительными темпами. По данным акад. С.Г. Струмилина, металлургическая промышленность России произвела в 1725 г. 1165 тыс. пудов чугуна, т.е. свыше 19 тыс. т. Производительность английских заводов не превышало в это время 17 тыс. т. Таким образом, за четверть века производство черных металлов в России увеличилось почти в восемь раз. В области черной металлургии наша страна вышла в то время на первое место в мире, оставив позади себя Англию, Францию, Германию и другие страны. Русский металл отличался высоким качеством. Это не удивительно. Ведь на Урале он выплавлялся из прекрасной руды - магнитного железняка, на чистом древесном угле, опытными металлургами. Вместе с тем он приобретал все большую популярность на мировом рынке. В 1716 г. наиболее индустриальная страна того времени - Англия ввезла первую партию русского железа - 2200 пудов. 16 лет спустя эта цифра увеличилась почти в 100 раз, а через несколько десятилетий более трети применяемых в Англии черных металлов имели клеймо русских заводов. Россия стала основным поставщиком металла для Англии, вступившей в это время на путь создания крупной машинной индустрии. «Без импортного железа, - указывает акад. С.Г. Струмилин, - промышленный переворот в Англии задержался бы, несомненно, на целые десятки лет». Конечно, оживленный заграничный спрос на русское железо и расширение отечественной промышленности, прежде всего оружейной, стимулировали дальнейшее развитие русской металлургии. В результате увеличения производства металлов уже в первой половине XVIII в. начали складываться предпосылки для разработки научных основ металлургии, вся предшествующая история которой, начиная с глубокой древности, не выходила за пределы эмпиризма. Она «была цепью непрерывных практических исканий новых способов получения металлов, передела их и производства специальных сплавов». Древние и средневековые мастера хорошо знали приемы получения и обработки железа, передаваемые из поколения в поколение. Часто эти приемы и накопленный опыт были достоянием отдельных семей или небольших групп мастеров и хранились в тайне. Все большая потребность в металлах, необходимость получать для изготовления различных изделий сплавы с разными свойствами заставили многих представителей науки XVIII века, прежде всего физиков и химиков, заняться разработкой теоретических основ металлургических процессов, постараться выяснить зависимость свойств металла от его состава, методов получения и характера обработки. Зачинателем науки о металлах на Руси по праву считается наш великий соотечественник Михаил Васильевич

М.В. Ломоносов (1711-1765)
Ломоносов. Это был замечательный ученый, один из образованнейших людей своего времени, человек большого, многогранного таланта. Он многое сделал для выяснения существа геологических процессов, для изыскания способов рациональной промышленной разработки полезных ископаемых. Ломоносов впервые создал стройную, подлинно научную теорию металлургического производства, сыгравшую огромную роль в развитии горнозаводской промышленности. Наиболее значительным трудом М. В. Ломоносова по горному делу и металлургии является его замечательная книга «Первые основания металлургии, или рудных дел», в большей своей части написанная в 1742 г., но опубликованная впервые в 1763 г. Книга завершается двумя прибавлениями «О вольном движении воздуха, в рудниках примеченном» и «О слоях земных», разработанными и написанными значительно позже основного текста. Книга Ломоносова поистине, энциклопедична. В отличие от издававшихся заграничных пособий по горнозаводскому делу, носивших описательный характер и включавших в себя много второстепенных деталей, труд русского ученого содержит большой научный и обобщенный практический материал. Написанная доходчивым и точным языком, первая русская книга по технике горнозаводского дела являлась не только исследованием, но и учебным пособием для отечественных металлургов. На этой классической книге великого русского ученого воспитывались многие поколения горняков и металлургов. Она и теперь, спустя два столетия после ее выхода, поражает своей систематичностью, глубиной научного содержания, правильностью и смелостью теоретических обобщений и практических рекомендаций.

Современники М.В. Ломоносова с большим интересом встретили выход в свет этого труда. В том же 1763 г. издававшийся в Петербурге журнал «Ежемесячные сочинения и известия об ученых делах» сообщал своим читателям:«...не надлежит сомневаться, чтоб книга, показывающая добывать, пробовать и выплавлять металлы, с большой охотой от российской публики не была принята». «Первые основания металлургии» были изданы огромным по тому времени тиражом - 1225 экземпляров. Книга была разослана на крупнейшие горные заводы и рудники Урала и Алтая, а также многим ученым и промышленникам и быстро приобрела широкую популярность.

«Первые основания металлургии» разделены автором на пять частей, следующих одна за другой в строгой логической последовательности. В предисловии Ломоносов четко определяет задачи металлургии, отделяя их от задач последующей обработки металлов методами ковки или другими способами, применявшимися на «железных» заводах. «Металлургии должность тут кончится,— пишет ученый,- когда она поставит чистые металлы или полуметаллы, в дело годные». Первая часть книги посвящена описанию свойств металлов и различных минералов, находящихся в земле. Прежде всего, дается определение самого понятия «металл». Металлом, по Ломоносову, «называется светлое тело, которое ковать можно». Далее металлы разделяются на «высокие» (т. е. благородные) - золото и серебро и на «простые» - медь, олово, железо, свинец. Первые «одним огнем без помощи других материй в пепел сожечь не можно, а, напротив того, простые чрез едину оного силу в пепел обращаются».

Ломоносов подробно характеризует свойства каждого из этих металлов (их удельный вес, ковкость, твердость и вязкость, цвет, окисляемость и др.), распространенность в природе и использование на практике. Особенно подробно он останавливается на свойствах железа, подчеркивая, что это наиболее дешевый и весьма распространенный в природе металл, хотя в отличие от других и не встречающийся в «самородном» виде.

Ученый применяет и широко распространенное теперь понятие - сталь. Он пишет о железе: «В рассуждении упругости уступают ему все металлы, которая ежели будет в нем превосходительна и с великою жестокостью совокуплена, то называется такое железо сталью».

Ломоносов придавал большое значение изучению процессов «го­рения» (т. е. окисления) металлов и продуктов окисления. «В этом состоит его гениальное предвидение значения теплот образования окислов металлов для характеристики протекания металлургических процессов».

В заключение первой части книги приводится общая характеристика железных руд и руд цветных металлов. При этом Ломоносов подчеркивает большое разнообразие руд, встречающихся в природе,- «почти всякая земля свои особливые руды имеет» - и важность уметь ана­лизировать руды «через пробирное искусство».

Вторая часть «Первых оснований металлургии» цели­ком посвящена рудным месторождениям и их поискам. Следующие разделы целиком посвящены горнозаводской практике. Большое внимание уделяется охране труда горняков, на­чиная от описания правильной организации подземных работ и мер по их безопасности и кончая характеристикой оградительных сооружений и одежды рабочих. Ломоносов подчеркивает роль «пробирного искусства», т. е. производства анализов исходного сырья (руды) и конечных продуктов металлургического производства.

Заключительная, пятая часть «Первых оснований металлургии» посвящена основным процессам извлечения железа и цветных металлов из руд. В книге говорится о подготовке руд к плавке - их измельчении, промывке и обжиге, т. е. обо всем том, что теперь называется обога­щением исходных материалов. Эта важная часть металлургического производства, нашедшая особенно широкое применение в наши дни, освещается в трудах М.В.Ломоносова. В пятой части речь идет о плавильных печах и процессах, в них происходящих. Ломоносов подробно описывает выплавку чугуна и железа. Он приводит конструкцию доменной печи и агрегатов для переработки чугуна в железо, останавливается на характере происходящих в них процессов и на методах плавки. Книга Ломоносова хорошо иллюстрирована многочисленными схемами и чертежами, облегчающими изучение описанных в ней процессов и механических приспособлений. Ломоносовские теории остались незыблемыми и в наше время.

  В. Е. Грум-Гржимайло  
В первой четверти XX в. они были развиты замечательным русским металлургом В. Е. Грум-Гржимайло, который посвятил свой многолетний классический труд «Пламенные печи», вышедший первым изданием в 1925 г., памяти М. В. Ломоносова — «первого русского поэта, ученого, химика, металлурга и основателя гидравлический теории пламенных печей».

XVIII век вошел в историю нашей Родины как век большого подъема горнометаллургической промышленности. В этот период были заложены основы науки о металле, созданы первые технические школы - начальные, средние и высшие - для подготовки квалифицированных кадров горнозаводского дела.

Мы не случайно остановились здесь так подробно на общих законах природы, установленных М. В. Ломоносовым в его работах по металлургии и горному делу. Великому русскому ученому выпала честь создать основы современной науки о металлах. Идеи, заложенные в его классических трудах, в течение многих десятилетий развивались отечественными учеными и инженерами. Прослеживая на протяжении двух с лишним столетий историю старейшей русской научной школы - школы металлургов, мы с полным к тому основанием ставим во главу ее Михаила Васильевича Ломоносова. Его работы в области горного дела и металлургии были вызваны к жизни потребностями быстро развивающейся русской промышленности, и они хорошо послужили нашему отечеству и мировой науке. Можно добавить, что М.В.Ломоносов заложил основу многих теоретических и прикладных исследований в металлургии.

Одновременно с созданием основ науки о металлах в XVIII в. продолжала совершенствоваться техника металлургического производства. Десятки талантливых изобретателей в России и за рубежом улучшали металлургические агрегаты, повышали их производительность.

Металлургическая техника России в конце XVIII в. не уступала западноевропейской, а во многом даже превосходила ее. Уральские доменные печи, например, считались в то время крупнейшими в мире. Их высота доходила до 13 м, т.е. была почти предельной для печи, работавшей на древесном угле. Наибольший диаметр такой печи (в распаре) составлял почти 4 м, а ее недельная выработка достигала 200 - 300 т. Такая высокая производительность по свидетельству видного немецкого историка металлургии Л.Бека, была недостижимой тогда для самых больших английских домен, работавших на коксе. Размеры и производительность доменных печей того времени больше всего зависели от количества и давления воздуха, нагнетаемого в печи. Русские изобретатели XVIII в. успешно работали над совершенствованием воздуходувных устройств доменных печей. В 1743 г. крепостной мастер уральских заводчиков Демидовых Григорий Махотин предложил вдувать воздух в доменную печь не через одну, а через две фурмы. Это мероприятие улучшило работу печи и ускорило процесс плавки.

Однако этого было мало. Крупные доменные печи требовали большего давления вдуваемого в них воздуха. Эту задачу успешно решил выдающийся русский теплотехник и изобретатель Иван Иванович Ползунов (1728 - 1766). В 1765 г., за три года до английского изобретателя Смитона, он сконструировал цилиндрическую воздуходувку, заменив ею малопроизводительные меха ящичного типа.

Во второй половине XVIII века в России выдвинулось немало талантливых организаторов и умелых руководителей горнозаводского дела, людей просвещенных, хорошо понимавших интересы и потребности развивающейся промышленности. Кстати, нужно сказать о старейшей в России высшей горнометаллургической школе, из стен которой вышли многие крупнейшие деятели отечественной горнозаводской промышленности, прославленные ученые - специалисты горного дела и металлургии. Горный институт был основан в 1773 г. Сначала, до 1804 г., он назывался Горным училищем, затем Горным кадетским корпусом, Институтом корпуса горных инженеров, а с 1866 г. носит свое теперешнее название - Горный институт. Его воспитанниками были видные русские и советские ученые П. П. Аносов, А. П. Карпинский, В. А. Обручев, И. М. Губкин, А. М. Терпигорев, Е. С. Федоров, Н.С. Курнаков, М. А. Павлов, В. Е. Грум-Гржимайло и др. Русский ученый металловед Павел Петрович Аносов (1797-1851) в1831 г. за 23 года до того, как это сделал английский металлург Генри Клифтон Сорби, применил микроскоп для определения структуры стали. Им была разработана технология изготовления шлифов. Аносову первому удалось открыть тайну булата. Он получи

Похожие статьи:

poznayka.org

Роль металлов в жизни и истории человечества

Оценить роль металлов в нашей жизни довольно просто – достаточно оглянуться и посмотреть вокруг себя. Металл повсюду. Кухонная утварь – ложки, вилки, ножи, кастрюли, сковородки – практически все из металла. Бытовая техника – стиральные машины, пылесосы, телевизоры, компьютеры – невозможна без металлов. Дома и улицы городов освещаются электричеством, которое подводится по металлическим проводам. Современные сооружения держатся за счет железобетонных конструкций. Между городами по стальным рельсам мчатся поезда, при создании которых использованы самые разные металлы, а по дорогам колесят машины, которые также во многом состоят из металлов. Корабли в море, самолеты в небе, ракеты и космические аппараты – все это просто невозможно без металлов и их сплавов. Да и странно было бы, если бы мы в нашей жизни обходились без того, что занимает весомую долю химической таблицы Менделеева.

Рис. 1. Эйфелева башня в Париже сделана из металла

Разнообразные свойства металлов – их ковкость, прочность и пластичность – давно сделали жизнь людей намного комфортней, ведь металлы используются уже на протяжении многих тысячелетий в самых разных сферах человеческой деятельности, из которых, пожалуй, наиболее значимой является создание орудий труда. Орудий, с помощью которых человек активно преобразует окружающий мир, приспосабливая его под свои нужды. Недаром с древнейших времен высоко ценились те, кто умел обращаться с металлом и изготавливать из него эти самые орудия труда.

Например, одна известная притча, созданная как минимум три тысячи лет назад, гласит следующее.

Царь Соломон по окончании строительства Иерусалимского храма решил прославить лучших строителей и пригласил их во дворец. Даже свой царский трон уступил он на время пира лучшему из лучших – тому, кто особенно много сделал для сооружения храма.

Когда приглашенные явились во дворец, один из них быстро взошел по ступеням золотого трона и сел на него. Его поступок вызвал изумление присутствующих.

– Кто ты и по какому праву занял это место? – грозно спросил разгневанный царь.

Незнакомец обернулся к каменщику и спросил его:

– Кто сделал твои инструменты?

– Кузнец, – ответил тот.

Сидевший обратился к плотнику, столяру:

– Кто тебе сделал инструменты?

– Кузнец, – отвечали те.

И все, к кому обращался незнакомец, отвечали:

– Да, кузнец выковал наши инструменты, которыми был построен храм.

Тогда незнакомец сказал царю:

– Я кузнец. Царь, видишь, никто из них не мог бы выполнить свою работу без сделанных мною железных инструментов. Мне по праву принадлежит это место.

Убежденный доводами кузнеца, царь сказал присутствующим:

– Да, кузнец прав. Он заслуживает наибольшего почета среди строителей храма.

Рис. 2. Суд Соломона (Никола Пуссен)

Кузнец в древние времена был не просто человеком, обрабатывающим металл. Его сфера деятельности охватывала практически всю технологическую цепочку от поиска и добычи руды до создания готовых изделий из металла, который выплавлялся из этой руды. И тех, кто видел его за работой, конечно же, поражало то, что кузнец (он же металлург по сути) получал ценные вещи практически «из ничего» – из куска какого-то камня. Поэтому у многих народов кузнец-металлург считался чуть ли не чародеем, а сама профессия была очень почетной.

С кузнецом не положено говорить на «ты», – уважительно отмечает финская поговорка.

По свидетельству английского ученого и публициста Бэзила Дэвидсона, оседлые земледельческие племена Африки почти повсюду считали кузнецов почетной кастой, а часто даже привилегированным сословием. Дэвидсон приводит также слова одного из исследователей о том, что в некоторых районах Зулуленда (бывшего государства зулусов на юге Африки) профессия кузнеца не только считается одной из самых почетных, но и окружена почти мистической таинственностью.

Немецкий этнограф Юлиус Липе сообщает, что в некоторых африканских государствах, расположенных южнее Сахары, царям часто было совершенно необходимо знать кузнечное дело. Так в одном из больших государств на территории Конго в средние века царя избирал совет вельмож. Избирали, конечно, не из простых людей. Но любой кандидат, который хотел стать царем, должен был доказать, что он является хорошим кузнецом.

Ясно, что для столь многогранной деятельности, какую нужно было совершить на пути от руды до готового металлического изделия, кузнец-металлург должен был обладать колоссальным знанием, которое чаще всего передавалось из поколения в поколение. Поэтому у многих древних народов кузнецом мог стать только тот, среди предков которого уже были кузнецы. Обыкновенный человек не мог взяться за это священное ремесло.

Рис. 3. Поиск руды с помощью лозоходства (средневековая гравюра)

Конечно, самые древние инструменты из металла еще не обладали теми характеристиками по твердости и прочности, какими обладают современные изделия. Но и они, как выясняется, весьма успешно могли конкурировать с каменными орудиями труда.

Например, одно время считалось, что мягкая самородная медь – довольно плохой материал даже для обработки дерева. Но в конце 50-х – начале 60-х годов советский историк Семенов организовал практические исследования по сравнению эффективности каменных и медных орудий и доказал несостоятельность подобных сомнений.

«Доктор исторических наук С.А.Семенов с группой молодых археологов в приангарской тайге провел серию опытов по сравнительному сопоставлению производительности медных и каменных орудий. Два одинаковых по форме топора – медный и каменный – были использованы при рубке равных по толщине сосен диаметром 25 сантиметров. В роли лесоруба выступал один и тот же человек. Непрерывно орудуя каменным топором, он свалил сосну только через 75 минут после начала работы. Каково же было изумление присутствующих, когда соседняя сосна была срублена им же с помощью медного топора всего через 25 минут! Медный топор оказался эффективнее каменного в 3 раза! Чтобы сопоставить рабочие качества не только ударных, но и режущих орудий, начали строгать деревянный сук медным, а потом кремневым ножом. Производительность медного ножа пре­взошла каменный в 6-7 раз!» (Н.Рындина, «Человек у истоков металлургических знаний»).

«Медное сверло делало отверстие в березовом полене в 22 раза быстрее кремневого. Так замечательно просто был снят вопрос, почему медные орудия произвели переворот в древней технике» (С.Иванова, «Металл: рождение для цивилизации»).

Позднее историк металлургии Рындина со своими сотрудниками экспериментально подтвердила и то, что качества медных инструментов можно заметно улучшить с помощью довольно простых приемов. Например, посредством обычной ковки, доступной и нашим древним предкам, которым для этого достаточно было лишь взять в руки подходящий камень и использовать его в качестве молотка. Дело в том, что в процессе ковки значительно повышается твердость меди, которую можно увеличить таким способом в несколько раз.

«Английский ученый Г. Г. Коглен на опыте доказал, что литую медь с исходной твердостью 30-40 единиц по шкале Бринеля можно довести одной ковкой до твердости 110 единиц. Эти цифры приобретут особую значимость, если вспомнить, что твердость железа составляет всего 70-80 единиц» (Н.Рындина, «Человек у истоков металлургических знаний»).

Проблема была лишь в том, что при этой так называемой холодной ковке растет не только твердость, но и хрупкость металла, что значительно затрудняет задачу получения действительно качественного изделия. Но эту проблему удалось обойти с помощью периодического нагрева меди до 850оС, что уменьшало хрупкость материала.

«Было поставлено много опытов, прежде чем нашли оптимальные условия: бросали кусок меди в костер, он раскалялся, затем остывал – металл становился мягким и легко гнулся. Теперь можно было ковать его холодным. Каждый новый обжиг повышал и твердость, и пластичность меди» (С. Иванова, «Металл: рождение для цивилизации»).

Рис. 4. Медный топор

Открыв для себя полезные свойства металлов, человек, конечно же, не ограничился лишь одними орудиями труда. Пожалуй, даже наоборот – первоначально, как полагают историки, блеск и цветовое разнообразие металлов послужили причиной использования их для изготовления различных украшений и культовых предметов. Именно такие изделия считаются самыми древними из известных археологических находок. Чуть позднее металл стали использовать для изготовления разнообразных предметов бытовой утвари – от мелких иголок и рыболовных крючков до зеркал и котлов для приготовления пищи. Нашли металлы свое применение и в такой неожиданном для нас прикладном использовании как медицина.

В древних манускриптах говорится о пользе ношения металлических украшений и содержатся подробные описания случаев, в которых для очищения и лечения применялись пластины из различных металлов. О том, что с помощью пластин из меди можно лечить заболевания кожи, различные язвы и ушибы, а также холеру, писали Аристотель, Гиппократ, Гален, Парацельс, Аль-Бируни и Авиценна. Препараты, в состав которых входило золото и его соли, применяли при лечении проказы, волчанки, туберкулеза и некоторых венерических болезней.

Тибетские врачи полагали, что препараты из золота не только продлевают жизнь и повышают иммунитет у пожилых людей, но и выводят из организма различные яды, поэтому рекомендовали использовать золото при отравлениях. Кроме того, золото и его соединения считаются эффективным средством при лечении болезней почек, так как стимулируют выведение из организма избыточной жидкости. Серебро, по их мнению, обладает способностью излечивать нагноения и очищать кровь, а также ускорять заживление ран. Препараты из меди очищают гнойные раны, способствуют излечению болезней верхних дыхательных путей и печени. В тибетском трактате «Дзэйцхар Мигчжан» содержатся описания 25 лекарственных препаратов, в состав которых входят металлы.

В медицине Китая металлотерапия является составным элементом акупунктуры. Как полагают сторонники данного метода, введение металлических игл в определенные точки помогает восполнить недостаток металла в организме и восстановить нарушенную циркуляцию энергетических потоков…

Как бы то ни было, металлы довольно быстро проникли в самые разные сферы жизни человека, кардинально изменив все его существование на самой заре человеческой цивилизации.

Рис. 5. Медные браслеты применялись и в лечебных целях

С чего все начиналось?..

Великий философ Древнего Рима Тит Лукреций Кар в I веке до нашей эры в своем сочинении «О природе вещей» написал следующее:

«Прежде служили оружием руки могучие, когти,

Зубы, каменья, обломки ветвей от деревьев и пламя,

После того, как последнее стало людям известно.

После того была найдена медь и порода железа.

Все-таки в употребленье вошла прежде медь, чем железо.

Так как была она мягче, притом изобильней гораздо.

Медным орудием почва пахалась, и медь приводила

Битву в смятенье, тяжкие раны везде рассевая.

Скот и поля похищались при помощи меди, легко ведь

Все безоружное, голое повиновалось оружью.

Начали мало-помалу мечи из железа коваться.

Вид же оружья из меди в людях возбуждать стал презренье.

В это же время и землю возделывать стали железом,

И при войне с неизвестным исходом равнять свои силы».

Рис. 6. Тит Лукреций Кар

По сути, именно эти строки и легли в основу современного деления всей истории человечества, в которой специалистами выделяются большие периоды под названиями «каменный век» (неолит), «медный век» и «железный век». Этот перечень был дополнен датскими учеными К.Томсеном и Е.Ворсо понятием «бронзовый век», которое они ввели в археологическую науку в первой половине XIX века, поместив этот период между медным и железным веками. В таком виде данное деление и дошло до наших дней, иллюстрируя ту схему очередности освоения металлов человеком, которая ныне принята в академической науке.

Строго говоря, Томсен и Ворсо всего лишь исправили ошибку, сделанную при переводе текста Лукреция Кара. Дело в том, что римляне (вслед за греками) часто путали между собой понятия «медь» и «бронза», нередко обозначая их одним и тем же термином. В те так называемые античные времена никто в Средиземноморье не использовал медь для изготовления орудий труда и оружия – эту функцию исполняла бронза. И Лукреций Кар явно писал именно о бронзе, а вовсе не о меди.

Но как бы то ни было, указанная четырехступенчатая схема прижилась и вошла в учебники.

Рис. 7. Четыре периода развития человечества

Итак, во времена каменного века человек ориентировался на использование того, что было под рукой – в ход шли камни, дерево, кости, обсидиан (вулканическое стекло) и другие материалы, которые давала природа. Постепенно человек научился их дополнительно обрабатывать, добиваясь полезного улучшения свойств этих подручных предметов. Основным же орудием труда оказывались камни, которым люди стали придавать самую разнообразную форму сначала простым откалыванием кусков камня, а позднее используя дополнительно сверление, шлифовку и полировку. Как полагают ныне историки и антропологи, камень играл главную роль в жизни человека на протяжении сотен тысяч лет.

Рис. 8. Каменное рубило

И вот в какой-то момент человек открыл для себя металлы. Сначала, как полагают историки, в самой доступной – самородной форме.

«Открытие, вероятно, состоялось – как это иногда случается – в результате какой-то неудачной операции. Ну, например, так: доисторическому земледельцу потребовалось пополнить запас каменных пластинок и топоров. Из кучи заготовок, лежавших у его ног, он выбирал камень за камнем и умелыми движениями отбивал одну пластину за другой. А потом в его руки попал какой-то блестящий угловатый камень, от которого, сколько он ни бил по нему, ни одна пластинка не отделялась. Более того, чем усерднее он дубасил по этому бесформенному куску сырья, тем больше тот начинал походить на лепешку, которую в конце концов можно было мять, крутить, вытягивать в длину и свивать в самые удивительные формы. Так люди впервые познакомились со свойствами цветных металлов – меди, золота, серебра...» (Р.Малинова, Я.Малина, «Прыжок в прошлое: Эксперимент раскрывает тайны древних эпох»).

Поскольку в природе в самородном виде медь и золото (по сравнению с другими металлами) встречается достаточно часто, серебро – значительно реже, а железо вообще в редчайших случаях, то первыми металлами, с которыми познакомился человек, стали как раз золото и медь. Именно из них наши древние предки стали изготавливать сначала украшения, а затем и другие предметы и орудия труда.

Рис. 9. Медный самородок

«При изготовлении первых, очень простых украшений, оружия и инструментов им было достаточно самого распространенного технического приема каменного века – удара. Но эти предметы были мягкими, легко ломались и затуплялись. В таком виде они не могли угрожать господству камня. А кроме того, металлы в чистом виде, поддающиеся обработке камнем в холодном состоянии, в природе встречаются крайне редко. И все-таки новый камень им понравился, поэтому они экспериментировали с ним, комбинировали приемы обработки, ставили опыты, думали. Им пришлось, естественно, пережить много неудач, и прошло очень много времени, прежде чем им удалось открыть истину. При высокой температуре (ее последствия они хорошо знали по обжигу керамики) камень (который мы сегодня называем медью) превращался в текучее вещество, принимавшее вид любой формы. Инструменты могли обрести очень острую режущую кромку, которую к тому же можно было затачивать. Сломанный инструмент не надо было выбрасывать – достаточно было его расплавить и снова отлить в форме» (Р.Малинова, Я.Малина, «Прыжок в прошлое: Эксперимент раскрывает тайны древних эпох»).

Хотя иногда этот переход объясняется еще проще – дескать, среди камней, которыми человек обложил костер, чтобы сберечь драгоценный жар, случайно оказался медный или золотой самородок, который расплавился. Человек заметил, что «камень» превратился в странную жидкость, которая при остывании вновь затвердела и превратилась в «камень», но уже другой формы. Осталось лишь использовать таким случайным образом открытое свойство для отливки металлических изделий нужной формы. Считается, что первоначально отливка расплавленного металла осуществлялась в обычную земляную или глиняную форму, позднее же люди научились изготавливать специальные формы из камня, а затем и из металла. Человек сделал свои первые шаги в том, что мы называем ныне металлургией…

«Благодаря пластичности меди одной ковкой из нее можно было получить очень тонкие и острые лезвия. Поэтому такие важные для древнего человека изделия, как иглы, шилья, рыболовные крючки, ножи, кинжалы, наконечники стрел и копий, изготовленные из металла, оказались более совершенными, чем сделанные из камня и кости. Благодаря плавкости меди оказалось возможным придать ей такую сложную форму, которая в камне была недостижимой. Поэтому освоение плавления и литья определило появление многих новых, неизвестных ранее орудий – сложных топоров, мотыг, комбинированных топоров-тесел и т.д.» (Н.Рындина, «Человек у истоков металлургических знаний»).

Рис. 10. Каменная форма для отливки топоров (Сардиния)

Спустя, как считается, довольно продолжительное время – несколько тысячелетий – человек открыл для себя, что можно получать те же самые металлы (медь, золото и серебро) из странных камней, которые были совсем не похожи на вожделенный металл, то есть из руды. Либо куски руды случайно оказались все в том же костре, либо человек уже целенаправленно стал экспериментировать, помещая в огонь все новые и новые камни. Как бы это ни произошло, после открытия столь полезного свойства таких камней, человек начал специально добывать металлосодержащие руды.

В ходе дальнейшего экспериментирования люди усовершенствовали место плавки, заменив обычный костер закрытой печью. А для повышения температуры внутри печи придумали систему подвода необходимого для этого кислорода – сначала с естественным притоком воздуха, а затем и с искусственным поддувом. С той же целью вместо обычных дров стали использовать специально подготавливаемый древесный уголь. Изменилось и место плавки – руду помещали уже не прямо в огонь, а в керамический сосуд (тигель).

Получение металлов не только из самородных жил, но и из руды, позволило значительно увеличить производство металлических изделий. Металл стал уверенно вытеснять каменные орудия труда. Человечество вступило в медный век.

«Переход к использованию орудий из металла вызвал не только общий рост производительности труда, но и расширил технические возможности многих отраслей производства. К примеру, стала доступна более совершенная обработка дерева. Медные топоры, тесла, долота, а позднее пилы, гвозди, скобы позволили выполнять такие сложные работы по дереву, которые ранее были просто неосуществимы. Эти работы способствовали улучшению приемов домостроительства, появлению выпиленного или вырезанного из дерева колеса, а по мнению английского археолога Гордона Чайлда, и первой цельнодеревянной сохи» (Н.Рындина, «Человек у истоков металлургических знаний»).

Рис. 11. Борнит – минерал, содержащий медь

Экспериментирование с разными видами руды привело к тому, что в некий момент человек получил сплав меди и олова. Когда именно и где это произошло – историки спорят до сих пор, но никто из них не сомневается в том, что это стало эпохальным событием. По крайней мере на текущий момент считается, что сплав олова с медью – бронза – был известен уже в IV тысячелетии до нашей эры, а чистое олово во II тысячелетии до нашей эры

Олово очень легко выплавлялось из черно-коричневого камня – касситерита. Само по себе олово мягко и непрочно, но, если его добавить к меди, при сплавлении получается красивый желтый металл гораздо тверже меди. Кроме того, добавка олова к меди, начиная с минимальных долей процента, улучшает ее литейные качества.

Оценив столь полезные преимущества сплава над обычной медью, люди перешли к созданию орудий труда из бронзы. Это создало базу для очередного рывка человечества по пути прогресса во всех сферах деятельности.

«…многие, вполне реальные достиже­ния древнего человека могут быть поставлены в связь с успехами металлургии. Представив себе эти достижения, легче понять, почему археологи выделяют в истории первобытного человека в качестве самостоятельных хозяйственно-технических этапов медный и бронзовый века. Они оценивают их не только с точки зрения основного, используемого для изготовления орудий металла, но и с точки зрения общего технического и социального прогресса общества» (Н.Рындина, «Человек у истоков металлургических знаний»).

Рис. 12. Кристалл касситерита

Последней наступила очередь железа. Считается, что это было обусловлено целым рядом причин.

Прежде всего – в отличие от меди самородное железо в природе встречается крайне редко. Как правило, самородное железо находят в виде мельчайших, неправильной формы зерен, иногда в виде губчатых или сплошных объектов, рассеянных в базальтовых породах. Другой вид самородного железа – железо метеоритное – также не столь широко встречается, чтобы можно было вести речь о его сколь-нибудь масштабном использовании в древние времена…

Здесь стоит оговориться, что это утверждение из учебников не совсем корректно. И в качестве действительных причин позднего освоения железа оно вряд ли годится. Дело в том, что в виде различных соединений – типа гематита и магнетита – железо распространено довольно широко. И если вести речь о выплавке металлов из руд (в которой на самом деле тот же гематит использовался в качестве добавок с древнейших времен), то эту причину позднего использования железа следует считать несостоятельной. Гораздо более важны другие факторы.

Во-первых, для выплавки железа требуются существенно более высокие температуры, нежели для получения меди или бронзы. И достичь необходимых температур в простейших древних металлургических печах было просто невозможно.

Но главное, и это во-вторых, само по себе железо представляет мало ценности, поскольку чистое железо – весьма мягкий материал. И широкое его использование началось лишь с освоением производства стали – «сплава» железа с углеродом. Гораздо более твердая по сравнению с железом сталь уже могла вполне успешно конкурировать с бронзой.

Рис. 13. Магнетит

Самым древним способом получения железа считается так называемый сыродутный процесс, при котором железо получали непосредственно из руды в небольших печах, создаваемых вначале непосредственно в земле. Сыродутным этот способ назывался из-за того, что в печь подавали («дули») холодный («сырой») атмосферный воздух.

Сыродутный процесс не обеспечивал достижения температуры плавления железа (1537оС), а максимально доходил до 1200оС, так что это была своего рода «варка» железа. Восстановленное железо концентрировалось в тестообразном виде на самом дне печи, образуя так называемую крицу – железную губчатую массу с включениями несгоревшего древесного угля и с многочисленными примесями шлака.

Из крицы, которую в раскаленном виде извлекали из печи, можно было изготавливать изделия только после предварительного отделения этой шлаковой примеси и устранения губчатости. Поэтому непосредственным продолжением сыродутного процесса были холодная и, главное, горячая ковка, состоявшая в периодическом прокаливании кричной массы и ее проковывании. В результате создавались крицы-заготовки, которые и использовались для дальнейшего производства железных изделий.

Столь непростой, многостадийный процесс требовал, конечно, более длительного времени для его освоения, нежели выплавка меди и бронзы. Это и считается основной причиной более позднего внедрения железа в жизнь людей.

Но как бы то ни было, человечество все-таки совершило очередной рывок по пути своего прогресса, перейдя в итоге из бронзового века в век железный. И даже сейчас, когда широко используются всевозможные пластмассы и композитные материалы, мы все-таки продолжаем жить в железном веке, поскольку железо остается основным материалом нашей реальности. Хотя, конечно, технология получения железа и стали очень сильно изменилась по сравнению с древними временами…

Рис. 14. У мартеновской печи

Вот так вкратце выглядит история освоения металлов человеком в учебниках. Картинка на первый взгляд кажется гладкой и абсолютно непротиворечивой. Но это, как выясняется, только на первый взгляд и только в учебниках…

 

Медная Северная Америка

Хорошую иллюстрацию к жизни общества в медном веке предоставляет нам Северная Америка. Когда сюда вслед за Колумбом прибыли искатели приключений и драгоценных металлов, местные индейцы не знали не только железа, но и бронзы. Основным их металлом была самородная медь.

В центральной части североамериканского континента к югу от области Великих озер располагается одна из самых больших речных систем мира – Миссисипи, которая охватывает огромную территорию. Благодаря этой речной системе, которая служила хорошей «транспортной сетью», здесь сложился ареал развитой культуры, созданный примитивными охотниками и собирателями, и получивший в науке название Вудленд. К этому времени тут впервые появляется керамика, традиция строительства погребальных курганов, складываются зачатки земледелия, а также появляются изделия из меди. Эпицентр этой культуры располагался вдоль течения Миссисипи и ее притоков – рек Миссури, Огайо и Теннеси.

Основными «медными» центрами в данном регионе были Висконсин, Миннесота и Мичиган. Уже в очень давние времена – в V–III тысячелетии до нашей эры (по современной датировке) – талантливые местные мастера изготавливали медные наконечники стрел и копий, а также ножи и топоры. Позднее люди культур адена, хоупвелл и Миссисипи, последовательно сменявшие культуру Вудленд, создавали превосходные медные подвески и прикладные украшения, а также ритуально-мемориальные «доски» и декоративные изысканно украшенные тарелки и блюда из листов кованой меди. К моменту появления здесь европейцев у северо-западных индейцев уже имелись даже своеобразные «деньги» в виде пластинок из чистой меди.

Рис. 15. Ареал культуры хоупвелл

Однако, несмотря на эти достижения, обработка меди велась примитивным способом. Плавка была неизвестна индейцам. Медь добывали из наиболее чистых рудных жил, затем расплющивали при помощи молота, а когда она достигала достаточно мягкого и податливого состояния, нарезали листы необходимой формы. Прямо на них гравировали узор, используя резцы из камня или кости.

До недавнего времени считалось, что индейцы североамериканского континента использовали лишь холодную ковку, хотя ряд исследователей и допускал вероятность освоения местными мастерами также метода горячей ковки. Недавние же исследования внутренней структуры некоторых медных изделий подтвердили, что горячая ковка индейцам все-таки была известна. Проанализировав размер, форму и особенности зерен меди внутри изделий, исследователи пришли к выводу, что древние мастера обрабатывали заготовку тяжелым молотом, затем помещали ее на 5-10 минут в горячие угли, что размягчало медь и уменьшало ее хрупкость, и после этого повторяли цикл столько раз, сколько требовалось для получения тонкого медного листа. Процедура, как легко заметить, полностью совпадает с экспериментами, проведенными Н.Рындиной с сотрудниками (см. ранее).

Рис. 16. Медные мемориальные «доски» североамериканских индейцев

И даже на самом севере континента гренландцы и эскимосы использовали найденные медные самородки и делали из них гвозди, наконечники для стрел и другое оружие и инструменты без использования плавки. Шотландский купец-путешественник, агент канадской Северо-Западной (пушной) компании, Александер Макензи, описывая свое путешествие через североамериканский континент в конце XVIII века, свидетельствует о том, что чистая медь была широко распространена среди племен, живущих вдоль побережья Северного Ледовитого океана. Их наконечники стрел и копий выковывались «вхолодную», с помощью одного лишь молота.

И эти племена, и жители обширного региона Миссисипи использовали для изготовления своих изделий самородную медь из района Верхнего озера, расположенного на границе нынешних США и Канады. Здесь располагались ее богатейшие запасы.

Обычно в промышленных объемах самородная медь встречается очень редко. И в этом отношении медные руды района Верхнего озера уникальны. Рудоносная полоса протянулась тут по берегу одного из крупнейших озер мира приблизительно на полтысячи километров. И если самородки золота, вес которых превышает 10 килограмм, можно перечислить по пальцам, то по отношению к меди природа Северной Америки оказалась неизмеримо богаче и щедрее. Самородки этого металла, найденные возле Верхнего озера, на полуострове Кыосиноу, достигали веса 500 тонн!..

Рис. 17. На берегу Верхнего озера

В районе Верхнего озера в Северной Америке самородная медь была известна и добывалась очень давно – еще задолго до появления тут европейцев. К их приходу большая часть горных выработок уже поросла лесом. По данным М.Неймайра, старые открытые выработки и мелкие шахты тянулись в пределах меденосной полосы приблизительно на двести километров. Возле них были найдены каменные молотки, древесный уголь, медные орудия труда.

Современная промышленная добыча меди велась тут с 1845 по 1968 год. За это время было получено около 5,5 миллиона тонн меди. C 1968 года рудники законсервированы. Остаток же запасов оценивается примерно в 500 тысяч тонн меди.

По некоторым оценкам, к моменту начала промышленной добычи в этом регионе уже была выбрана почти половина начальных запасов меди, а добыча ее велась на протяжении многих тысячелетий. Когда она началась – вопрос до сих пор дискуссионный. Ныне историки оценивают начало добычи здесь самородной меди примерно VI-V тысячелетием до нашей эры. Вместе с тем есть совершенно иная точка зрения, согласно которой разработка данного месторождения началась на много тысячелетий раньше. Есть даже сторонники версии, что местные рудники эксплуатировались еще легендарными атлантами.

Но к версии более ранних датировок мы вернемся позднее. А пока лишь отметим, что уникальными оказываются не только месторождения района Верхнего озера, но и сам североамериканский пример общества, жившем в медном веке. Больше нигде в мире нет столь четких свидетельств того, что человечество проходило в своем развитии медный век. Во всех других регионах находки изделий из самородной меди настолько малочисленны, что строго и доказательно выделить с их помощью отдельный период под названием «медный век» просто нельзя. Вдобавок, из-за своего почтенного возраста эти изделия находятся порой зачастую в таком плачевном состоянии, что невозможно даже вообще провести корректный анализ их химического состава, не то чтобы определить, какая именно медь использовалась при их изготовлении – самородная или выплавленная из руды. Да и датировки подобных артефактов нередко вызывают сильные сомнения. Так что Северная Америка остается единственным реальным подтверждением медного века как такового.

База данных

Для того, чтобы разобраться в истории древней металлургии и ее особенностях, нужно на что-то опираться. Но что имеется в нашем распоряжении?..

Прежде всего – это древние изделия из металла. До весьма недавнего времени как раз изделия из металла служили историкам основной эмпирической базой для рассуждений о ранних этапах металлургии. Именно для рассуждений, поскольку преимущественно все сводилось к теоретическим размышлениям о том, из чего и как было создано то или иное изделие. Причем в своих выводах историки опирались чаще всего лишь на внешние особенности конкретного артефакта и простые логические соображения, которые выстраивались на базе имеющихся данных о доступности тех или иных источников металла и о его общих физико-химических характеристиках (температура плавления, твердость, ковкость, возможность взаимодействия с другими элементами и прочее).

Естественно, что выводы, полученные в результате таких теоретических рассуждений, всегда вызывали законные сомнения в их достоверности (заметим в скобках, что в дальнейшем обоснованность этих сомнений во многом получила подтверждение). Ведь теория – это только теория…

Ситуация несколько улучшилась в ХХ веке, когда появилась возможность такого исследования химического состава металлических артефактов, которое не сопровождалось повреждением или даже полным уничтожением самих артефактов. Это дало возможность для получения новой информации и позволило продвинуться вперед в понимании ранних этапов металлургии.

Однако на первых этапах исследования состава изделий не имели необходимой точности. Вдобавок, металлические артефакты обладают целым рядом особенностей, которые существенно затрудняют получение корректных данных об их создании.

Во-первых, сами изделия – даже при известном химическом составе – чаще всего крайне мало могут сказать о том, из чего именно они были получены, и еще меньше о том, какие металлургические технологии применялись при их изготовлении. В частности, когда металл выплавлялся не из одной конкретной руды, а из смеси различных руд, что в древности практиковалось довольно часто.

Во-вторых, подавляющая часть металлов активно взаимодействуют с внешней средой. Пожалуй, тут лишь золото находится в «привилегированном» положении, крайне неохотно вступая в химические реакции с другими веществами. Все остальные металлы довольно активны с химической точки зрения, что приводит к коррозии изделий и заметному изменению их состава (при достаточном количестве времени).

Рис. 18. Золото лучше всего противостоит коррозии (частный музей в Лиме, Перу)

А в-третьих, поняв, что металлы можно плавить, человеку легко было сделать следующий шаг и додуматься до вторичного их использования, пуская отработавшие свой век изделия на переплавку. Естественно, что подобное вторичное использование металлов получило широкое распространение с древнейших времен. По изделиям же, прошедшим переплавку, практически невозможно определить, как именно, когда, где, из каких руд и с помощью какой технологии получен исходный металл, ведь в ходе переплавки его химический состав может очень серьезно измениться.



infopedia.su

Роль металлов в истории человечества. Применение металлов и сплавов

Дополнительные сочинения

Урок посвящен изучению роли металлов в истории человечества. Из материалов урока вы узнаете, какую роль сыграли металлы в развитии цивилизации, познакомитесь с областями применения некоторых металлов и их сплавов.

Тема: Вещества и их превращения

Урок: Роль металлов в истории человечества. Применение металлов и сплавов

1. Использование металлов в различные периоды

Металлы были известны человеку с древних времен, однако, их они не нашли применения, пока их не научились обрабатывать. В истории развития человечества по длительности и интенсивности использования соответствующих материалов выделяют каменный, медный, бронзовый и железный века:

Обратите внимание, медь – первый металл, который стали использовать для изготовления орудий труда и оружия. Почему медь, а не железо? Ведь железо гораздо более распространенный в природе металл, чем медь (массовая доля железа на Земле 4,1%, а меди – 0,005%).

Распространенность меди и железа в земной коре (массовые проценты)

Рис. 1. Распространенность меди и железа в земной коре (массовые проценты)

Объясняется это двумя факторами. Во-первых, железо встречается в природе в самородном состоянии крайне редко, в отличие от меди. Слово «железо» в переводе с древнегреческого означает «звездный». В чистом виде железо в природе встречается в составе осколков метеоритов. Во-вторых, медь можно легко получить из медной руды.

Если смешать черный порошок оксида меди (II) с углем и нагреть пробирку в пламени спиртовки, то через некоторое время цвет порошка станет красным, т. е. образуется медь.

Легко представить, как древние люди на костре могли получить медь из медной руды.

Следующий период в истории человечества – бронзовый век. Бронза – это сплав меди с оловом. Бронза имеет ряд преимуществ перед медью, она тверже и прочнее.

С середины I тысячелетия до н. э. человек научился добывать железо из руды. Наступил железный век.

Благодаря металлам, производительность труда настолько возросла, что позволила высвободить одних людей для управления государством, других – для занятия ремеслом, литературой, искусством. Использование человеком металлов можно считать условием, предопределившим становление цивилизации.

Золото и серебро тоже издавна использовались человеком. Эти металлы использовали как эквиваленты обмена. Золото определяло могущество и власть.

2. Применение металлов и сплавов

Какие же свойства металлов позволяют их широко использовать? Это физические свойства металлов (пластичность, прочность, тепло - и электропроводность) и химические свойства (неспособность многих металлов взаимодействовать с окружающей средой).

В чистом виде металлы используют редко, чаще применяют сплавы металлов.

На данном этапе развития цивилизации наиболее широко применяемый металл – железо. Твердость чистого железа невелика, поэтому используют его сплавы, как правило с углеродом: чугуны (содержание углерода более 2% по массе) и стали (С – менее 2%).

Сплавы железа с углеродом: чугун и сталь

       

Рис. 2. Сплавы железа с углеродом: чугун и сталь

Чтобы железо не подвергалось ржавлению при контакте с кислородом воздуха и водой, на его поверхность наносят слой другого металла, например цинка. Оцинкованным железом покрывают крыши домов, из него изготавливают кузов автомобиля.

Медь в чистом виде используют в тепло - и электротехнике. Например, из нее изготавливают электропровода. В основном, применяют сплавы меди – латунь и бронзу. Латунь – сплав меди с цинком. Ее используют в машиностроении и производстве бытовых товаров. Бронза, как уже было сказано, - сплав меди с оловом. Из нее делают водопроводные краны, различные детали механизмов, например часов, памятники, монументы.

Применение алюминия основано на его легкости, высокой электропроводности и химической стойкости. Его поверхность покрыта слоем прочной оксидной пленки, которая защищает металл от взаимодействия с окружающей средой. Недостаток алюминия – его мягкость. Поэтому чаще используют его сплавы с медью, магнием и марганцем. Такие сплавы называют дюралюминами. Дюралюмины используются в самолето - и автомобилестроении.

Использование дюралюминия

Рис. 3. Использование дюралюминия

Список рекомендованной литературы

1. Емельянова Е. О., Иодко А. Г. Организация познавательной деятельности учащихся на уроках химии в 8-9 классах. Опорные конспекты с практическими заданиями, тестами: Часть II. – М.: Школьная Пресса, 2002. (с.110-113)

2. Ушакова О. В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П. А. Оржековского и др. «Химия. 8 класс» / О. В. Ушакова, П. И. Беспалов, П. А. Оржековский; под. ред. проф. П. А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с. 56-59)

3. Химия. 8 класс. Учеб. для общеобр. учреждений / П. А. Оржековский, Л. М. Мещерякова, М. М. Шалашова. – М.:Астрель, 2012. (§19)

4. Химия: 8-й класс: учеб. для общеобр. учреждений / П. А. Оржековский, Л. М. Мещерякова, Л. С. Понтак. М.: АСТ: Астрель, 2005. (§§22,23)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов .

2. Тесты по химии (онлайн) .

3. Химические наука и образование в России .

Домашнее задание

с. 56-59 №№ 2, 3, 5, 6 из Рабочей тетради по химии: 8-й кл.: к учебнику П. А. Оржековского и др. «Химия. 8 класс» / О. В. Ушакова, П. И. Беспалов, П. А. Оржековский; под. ред. проф. П. А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

dp-adilet.kz

Роль металлов в истории человечества. Применение металлов и сплавов

Урок посвящен изучению роли металлов в истории человечества. Из материалов урока вы узнаете, какую роль сыграли металлы в развитии цивилизации, познакомитесь с областями применения некоторых металлов и их сплавов.

Тема: Вещества и их превращения

Урок: Роль металлов в истории человечества. Применение металлов и сплавов

Металлы были известны человеку с древних времен, однако, их они не нашли применения, пока их не научились обрабатывать. В истории развития человечества по длительности и интенсивности использования соответствующих материалов выделяют каменный, медный, бронзовый и железный века:

Обратите внимание, медь – первый металл, который стали использовать для изготовления орудий труда и оружия. Почему медь, а не железо? Ведь железо гораздо более распространенный в природе металл, чем медь (массовая доля железа на Земле 4,1%, а меди – 0,005%).

Рис. 1. Распространенность меди и железа в земной коре (массовые проценты)

Объясняется это двумя факторами. Во-первых, железо встречается в природе в самородном состоянии крайне редко, в отличие от меди. Слово «железо» в переводе с древнегреческого означает «звездный». В чистом виде железо в природе встречается в составе осколков метеоритов. Во-вторых, медь можно легко получить из медной руды.

Если смешать черный порошок оксида меди (II) с углем и нагреть пробирку в пламени спиртовки, то через некоторое время цвет порошка станет красным, т.е. образуется медь.

Легко представить, как древние люди на костре могли получить медь из медной руды.

Следующий период в истории человечества – бронзовый век. Бронза – это сплав меди с оловом. Бронза имеет ряд преимуществ перед медью, она тверже и прочнее.

С середины I тысячелетия до н.э. человек научился добывать железо из руды.  Наступил железный век.

Благодаря металлам, производительность труда настолько возросла, что позволила высвободить одних людей для управления государством, других – для занятия ремеслом, литературой, искусством. Использование человеком металлов можно считать условием, предопределившим становление цивилизации.

Золото и серебро тоже издавна использовались человеком. Эти металлы использовали как эквиваленты обмена. Золото определяло могущество и власть.

Какие же свойства металлов позволяют их широко использовать? Это физические свойства металлов (пластичность, прочность, тепло- и электропроводность) и химические свойства (неспособность многих металлов взаимодействовать с окружающей средой).

В чистом виде металлы используют редко, чаще применяют сплавы металлов.

На данном этапе развития цивилизации наиболее широко применяемый металл – железо. Твердость чистого железа невелика, поэтому используют его сплавы, как правило с углеродом: чугуны (содержание углерода более 2% по массе) и стали (С – менее 2%).

 

Рис. 2. Сплавы железа с углеродом: чугун и сталь

Чтобы железо не подвергалось ржавлению при контакте с кислородом воздуха и водой, на его поверхность наносят слой другого металла, например цинка. Оцинкованным железом покрывают крыши домов, из него изготавливают кузов автомобиля.

Медь в чистом виде используют в тепло- и электротехнике. Например, из нее изготавливают электропровода. В основном, применяют сплавы меди – латунь и бронзу. Латунь – сплав меди  с цинком. Ее используют в машиностроении и производстве бытовых товаров. Бронза, как уже было сказано, - сплав меди с оловом. Из нее делают водопроводные краны, различные детали механизмов, например часов, памятники, монументы.

Применение алюминия основано на его легкости, высокой электропроводности и химической стойкости. Его поверхность покрыта слоем прочной оксидной пленки, которая защищает металл от взаимодействия с окружающей средой. Недостаток алюминия – его мягкость. Поэтому чаще используют его сплавы с медью, магнием и марганцем. Такие сплавы называют дюралюминами. Дюралюмины используются в самолето- и автомобилестроении.

Рис. 3. Использование дюралюминия

Список рекомендованной литературы

1. Емельянова Е.О., Иодко А.Г. Организация познавательной деятельности учащихся на уроках химии в 8-9 классах. Опорные конспекты с практическими заданиями, тестами: Часть II. – М.: Школьная Пресса, 2002. (с.110-113)

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с. 56-59)

3. Химия. 8 класс. Учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. – М.:Астрель, 2012. (§19)

4. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005. (§§22,23)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов (Источник).

2. Тесты по химии (онлайн) (Источник).

3. Химические наука и образование в России (Источник).

Домашнее задание

с. 56-59 №№ 2, 3, 5, 6 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

mirror.vsibiri.info

: Металлургия: образование, работа, бизнес :: MarkMet.ru

Н.А. Коротченко, П.И.Черноусов

Древнейшие металлоносные культуры Евразии, заро­дившиеся в среде культур каменного века, расширяли свои территориальные границы в эпоху Бронзового века, который охватывает период III и II тысячелетий до н.э. За это время «металлическая цивилизация» распространи­лась на территорию свыше 40 млн км2. Последовавшие эпохи железа и средневековья почти не раздвинули её границ. Все основные события и революционные сдвиги в сферах технологии и социального развития совершались по преимуществу внутри этого обширного, но четко огра­ниченного пространства [1]. Ключевыми революционными техническими преоб­разованиями Бронзового века принято считать освоение ирригационного земледелия и полного металлургическо­го цикла производства металлов, включая добычу руды, выжиг древесного угля, подготовку материалов, выплав­ку и рафинирование чернового металла, литьё, ковку, волочение проволоки, другие виды металлообработки и рециклинг металлолома. В Бронзовом веке были освое­ны технологии выплавки и обработки металлов, получив­ших название «семь металлов Древности»: меди, золота, свинца, серебра, железа, ртути и олова [2-8].Были изобретены новые технологии для добычи и обработки камня. В строительном деле началось широ­кое применение металлических инструментов и орудий труда: кирок, кайл, сверл, молотов, тесел, резцов. Возникновение цивилизации Древнего мира потре­бовало развития транспорта. Для этих целей использова­лись естественные водные магистрали и многочисленные водные каналы, прокладывались дороги для колесных повозок.Первое изображение колесного транспорта, отно­сящееся к III тысячелетию до н.э., обнаружено на терри­тории бывшего Шумера (рис. 1) [2-6]. Появились легкие боевые колесницы - древнейший вид военной техники. Колесни­цы составляли главную силу всех армий Древнего мира вплоть до наступления позднего Железного века (т.е. до середины I тысячелетия до н. э). Для них требовалось легкое колесо, изготовить которое можно только с ис­пользованием специального металлического инструмен­та (рис. 2) [9]. Общепризнано, что определяющую роль в техниче­ском прогрессе в бронзовую эпоху сыграло появление ли­тых топоров, мечей и мотыг — основных видов орудий труда и оружия [4-6, 8-10]. Основой цивилизации стала металлургия меди. Для производства меди повсеместно использовались как окисленные, так и сернистые руды. Месторождения медной руды обычно делятся на две зоны. Верхняя часть, находящаяся над уровнем грунтовых вод, представляет собой зону окисления, содержащую легковосстановимый оксид, а нижняя, основная, часть месторождения явля­ется зоной цементации, состоящей из сульфидных руд, в основном халькопирита (CuFeS,) или халькоцита (Cu9S) [11-13].Содержание меди в сульфидных рудах намного ниже, чем в окисленных. После истощения верхних слоев начали использовать более бедные медью сульфиды. Это потре­бовало более высокого уровня горно-металлургических технологий, применения предварительного обжига, опе­раций по очистке различного рода штейнов и рафиниро­ванию «черновой» меди. Металлургические печи, наиболее характерные для бронзового века, были обнаружены в Австрии (Миттеберг), в Азербайджане (Мингечаур), на Сардинии. Четы­рехугольные или цилиндрические печи имели толстые стенки, высоту до полуметра, были сложены из камня и изнутри обмазаны глиной (или целиком глинобитные). На поду печи имели небольшое углубление для сбора ме­талла. Передняя стена внизу была снабжена отверстием, через которое мехами осуществлялась подача дутья и вы­пускался из печи шлак.Выплавленные из руды слитки меди содержали зна­чительное количество шлаковых включений. Их отде­ляли ударами молотов. Рафинирование черновой меди осуществляли в тиглях и небольших горнах. При этом на расплавленную черновую медь дутьевыми трубками подавали воздух, основная масса оставшихся в ней при­месей, кроме благородных металлов (золота и серебра), окислялась и формировала шлак [7, 8,15].В бронзовую эпоху высокого уровня достигли техно­логии холодной ковки и литья.Ковка - древнейший способ обработки металлов давлением. Освоение способа обработки самородного металла ковкой базировалось на накопленных навыках и опыте изготовления каменных орудий труда путем «обив­ки» камня каменным же молотом [15,16]. Самородная медь, которую первобытные люди вна­чале тоже считали разновидностью камня, при ударах ка­менного молота не давала характерных для камня сколов, а изменяла свою форму и размеры без нарушения сплош­ности материала. Это замечательное технологическое свойство «нового камня» явилось мощнейшим стимулом добычи самородного металла и использования его чело­веком. Кроме того, было замечено, что ковка повышает твердость и прочность металла.В качестве молота вначале применяли обычные куски твердого камня. Первобытный умелец, зажимая камень в руке, наносил им удары по куску самородного или вы­плавленного из руды металла. Эволюция этого простей­шего способа ковки привела к созданию прообраза куз­нечного молота, снабженного рукояткой [3-6]. Вторым из древнейших способов обработки металлов стало литье [3-6, 10]. Расплавленный металл при затвер­девании мог принять форму любого предмета. Сначала отливку производили в открытых глиняных или песча­ных формах. Их сменили открытые формы, вырезанные из камня, и формы, у которых углубление для отливаемо­го предмета находилось в одной створке, а другая была просто плоской, прикрывающей.Следующим шагом стало изобретение разъемных форм и закрытых форм для фигурного литья. В послед­нем случае сначала лепилась из воска точная модель бу­дущего изделия. Затем ее обмазывали глиной и обжигали в печи. Воск плавился, а глина принимала точный отпеча­ток модели и использовалась в качестве литейной фор­мы. Этот способ получил название литья по восковой модели. Мастера получили возможность отливать пусто­телые предметы очень сложной формы. Для образования полости практиковалась вставка в формы особых глиня­ных сердечников (литейных стержней). Несколько позд­нее были изобретены другие, более сложные технологии литья [10,11].Древние литейные формы делались из камня, метал­ла и глины. Последние, как правило, изготовлялись путем оттиска в глине специально сделанных моделей (из дере­ва и других материалов) изделий. Могли употребляться и сами отлитые металлические изделия. Следует отметить, что формы, вырезанные из камня или же литые металли­ческие, вследствие их большей ценности не всегда служи­ли для получения литых изделий, а могли использоваться для изготовления в них легкоплавких моделей. Например, в некоторых районах Англии было зафиксировано изго­товление свинцовых моделей в бронзовых литейных формах.Литые мечи и кинжалы раньше других бронзовых из­делий стали произведениями искусства. Древние мечи, найденные при археологических раскопках, часто снаб­жены не только замысловатыми рукоятями с литыми узорами, но и богатой инкрустацией из серебра, золота и драгоценных камней. Они изготовлялись как цельноли­тыми, так и биметаллическими, с использованием техно­логии налива. Это позволяло клинок меча или кинжа­ла отливать из твердых сортов бронзы и проковывать, а рукояти - из мягкой бронзы, с хорошими литейными свойствами и цветом. Биметаллические мечи, как прави­ло, отливали по восковым моделям.Согласно современным представлениям, ранний бронзовый век - это эпоха безраздельного господства мышьяковой бронзы. Олово пришло на смену мышьяку только во II тысячелетии до н.э. Отметим, что качество изделий из оловянной и мышьяковой бронз примерно одинаково, при этом технология обработки оловянной бронзы заметно сложнее, так как зачастую требует го­рячей ковки (хотя и при низких температурах). Редко на поверхности земли встречаются минералы олова. Тем не менее, оловянная бронза практически повсеместно вы­теснила мышьяковую [8].Главная причина заключалась в следующем. В древ­ности люди относились к металлическим предметам чрезвычайно бережно, ввиду их высокой стоимости. По­врежденные предметы отправлялись в ремонт или на пе­реплавку. Но отличительной особенностью мышьяка яв­ляется возгонка при температурах около 600 °С. Именно в таких условиях проводился смягчающий отжиг бронзо­вых изделий. Теряя часть мышьяка, металл изменял свои механические свойства в худшую сторону. Объяснить это явление древние металлурги не могли. Однако достовер­но известно, что вплоть до I тысячелетия до н.э., изделия из медного и бронзового лома стоили дешевле, чем из­делия из «первородного» металла [7].Было и еще одно обстоятельство, способствовавшее вытеснению мышьяка из металлургического производ­ства. Постоянное воздействие ядовитых паров мышьяка на организм приводит к ломкости костей, заболеваниям суставов и дыхательных путей. Неудивительно, что древ­ние металлурги не производили впечатления крепких и здоровых людей. Хромота, сутулость, деформация суста­вов были профессиональными заболеваниями мастеров работавших с мышьяковой бронзой. Недаром в мифах и преданиях многих народов, в древнейших эпосах метал­лурги часто изображаются хромыми, горбатыми, ино­гда - карликами, со скверным, раздражительным харак­тером, косматыми волосами и отталкивающей внешно­стью. Даже у древних греков бог-металлург Гефест был хромым.Олово стало последним из семи великих металлов древности, ставшим известным человеку. Оно не присут­ствует в природе в самородном виде, а его единственный минерал, имеющий практическое значение, касситерит является трудновосстановимым и малораспространен­ным [12-17]. Тем не менее, этот минерал был известен человеку уже в глубокой древности. Дело в том, что кас­ситерит является спутником (хотя и редким) золота в его россыпных месторождениях. Благодаря высокой удель­ной массе золото и касситерит в результате промывки зо­лотоносной породы оставались на промывочных лотках древних старателей. И хотя факты использования касси­терита древними ремесленниками неизвестны, сам мине­рал был знаком человеку уже во времена неолита.По-видимому, впервые оловянная бронза была произ­ведена из полиметаллической руды добытой из глубинных участков медных месторождений, в состав которой наряду с сульфидами меди входил и касситерит. Древние метал­лурги, уже располагавшие знаниями о положительном вли­янии на свойства металла реальгара и аурипигмента, до­статочно быстро обратили внимание на новый компонент шихты - «оловянный камень». Поэтому появление оловян­ной бронзы произошло, скорее всего, сразу в нескольких промышленных регионах Древнего мира [1, 7, 8]. Несмотря на выдающиеся достижения в металлур­гии меди, самым «технологичным» металлом Бронзового века было золото [4-6]. В III тысячелетии до н.э. жильное золото добывалось на территории Европы и Азии прак­тически из всех известных его месторождений. В древ­неегипетских и шумерских текстах часто можно найти упоминания о разновидностях употреблявшегося в древ­ности золота. Усматривалось различие в его происхожде­нии: «речное», «горное», «скалистое», «золото в камне», а также по цвету. Цвет нерафинированного золота зави­сит от его природных примесей: меди, серебра, мышьяка, олова, железа и пр. Древние металлурги принимали все эти сплавы золота за разновидности самого золота. Ар­хеологами найдены древние золотые изделия, охватыва­ющие большую гамму цветов: от тускло-жёлтого и серого до различных оттенков красного цвета.Технология очистки (рафинирования) золота от при­месей была известна шумерам уже в начале III тысячеле­тия до н.э. Её описание содержится в рукописях библио­теки ассирийского царя Ашшурбанипала. Согласно этой технологии золото плавили вместе со свинцом, солью и ячменными отрубями в специальных горшках, изготов­ленных из глины, смешанной с костной золой. Образую­щийся шлак впитывался пористыми стенками горшка, а на его дне оставался очищенный сплав золота с серебром. Таким образом, из золота удалялись все примеси, кроме серебра. На Ближнем Востоке и в Египте широко применялось листовое золото - фольга. Фольгой покрывали самые раз­личные предметы: как металлические, так и деревянные. Например, с помощью ковки или органического клея зо­лотая фольга прикреплялась к изделиям из бронзы, меди и серебра. При этом золотое покрытие спасало медь и бронзу от коррозии. Золотой фольгой часто покрывали деревян­ную мебель, прикрепляя ее при помощи маленьких золо­тых заклепок. Более тонкие золотые листы приклеивались к дереву, предварительно покрытому слоем специальной штукатурки [16].В эпоху Древнего мира широкий размах получи­ло производство ювелирных изделий и шитых золотом одежд. Ювелирные ремесла потребляли огромное коли­чество благородных металлов и их сплавов, прежде всего в виде проволоки. Золотая и серебряная проволока ис­пользовалась также в качестве эквивалента стоимости в торговле.В первой половине III тысячелетия до н.э. металло­обработка, особенно ювелирное дело, достигла высокого уровня в Месопотамии. Широкое развитие здесь получи­ла обработка золота, серебра и электрона. Особый инте­рес представляет известное погребение царицы Шубад (XXVI-XXVвв. до н.э.). Ее одежда была покрыта бога­тыми украшениями из золота, ляпис-лазури, сердолика. Массивный головной убор состоял из диадемы, венка из золотых листьев, золотых колец и трех золотых цветков. В диадеме использована тонкая золотая проволока диаме­тром 0,25-0,30 мм, свитая в спираль диаметром около 2,38 мм. Считают, что проволока изготовлена волочением.Наиболее древние образцы проволоки изготовлены либо ковкой, либо разрезкой кованого листового металла. В Абидосе (Египет) найден проволочный браслет, датиру­емый 3400 г. до н.э. Он состоит из двух групп бусинок, со­единенных прядью из свитых вместе золотых проволочек и толстого волоса. Искусно отделанная проволока имела такой же диаметр (0,33 мм), какой был у волоса.Существовало два основных способа получения ко­ваной проволоки. При первом способе слиток или кусок металла расковывался молотком в пруток заданной тол­щины и профиля. При втором способе из слитка или ку­ска металла ковкой получали лист, а затем разрезали его на полоски, края которых округляли ударами молотка. При циркулярной резке получались длинные куски про­волоки - в этом заключалось её преимущество. Приме­ром практического применения циркулярной резки ме­талла могут служить полоски из золота длиной более 1,5 м, найденные в одной из гробниц Ура [17].В Уре найдены также сканные (филигранные) из­делия, датированные III тысячелетием до н.э. Сущность сканного производства состоит в том, что из тонкой зо­лотой, серебряной или медной проволоки круглого или четырехугольного сечения выполняются ажурные или напаянные на металлическую основу узоры. Для боль­шей красоты проволока предварительно скручивается в две или три нити и сплющивается. Значительное распро­странение получили у древних народов шитые золотом одежды. Особенность этого вида искусства заключается в умении изготовлять тончайшие нити проволоки, кото­рые с основой материала образуют эластичную ткань.Попытки производить более изящную и тонкую про­волоку привели к тому, что постепенно был выработан новый способ ее получения. Для сглаживания неровно­стей, калибрования и уплотнения проволоку стали про­талкивать через отверстия в твердых материалах. Образ­цы такой проволоки из золота, датируемые IV тысячеле­тием до н.э., найдены в Египте. Впоследствии эта опера­ция выравнивания поверхности проволоки развилась в волочение [16].Считают, что в самом примитивном виде способ воло­чения начали применять в древнейший период (еще до по­явления металлических орудий) для отделки стержней дро­тиков и гарпунов. Стержни изготовляли из сырого дерева и затем калибровали протаскиванием (волочением) через костяные выпрямители. Раскопки погребений в Египте пе­риода Среднего царства (2800-2500 гг. до н.э.) подтверж­дают, что техника выпрямления деревянных прутков была широко распространена в древности. Обнаружена роспись, изображающая двух ремесленников, занятых выпрямлени­ем прутков из дерева.Технология разделения металлов была освоена в свя­зи с развитием металлургии серебра. Древнейшие сере­бряные изделия обнаружены на территории Ирана и Ана­толии (современная Турция). В Иране их нашли в местечке Тепе-Сиалк: это пуговицы, датируемые началом V тысяче­летия до н.э. В Анатолии, в Бейджесултане, найдено сере­бряное кольцо, датируемое концом того же тысячелетия.Металлургия серебра возникла в прямой связи с до­бычей свинца из соединений, содержащих свинец и серебро одновременно. Археологические находки из двух этих металлов, как правило, синхронны. Свинцовые руды, содержащие значительное количество серебра распро­странены во многих регионах мира. Известны их место­рождения в Испании, Греции, Иране, на Кавказе. Процесс отделения серебра от свинца, называемый купеляцией, был известен уже в IV тысячелетии до н.э. Для разделе­ния свинца и серебра применяли купеляцию: окисление свинца, отделение оксида (глета) от серебра и последую­щее «повторное» восстановление свинца из оксида [2-7].В быту серебро почти повсюду появилось позднее меди и золота. Из него изготавливали, главным образом, посуду, украшения и ювелирные изделия. Быстро научились де­лать серебряную фольгу и фурнитуру, которыми украшали одежду и мебель. Уже в III тысячелетии до н.э. серебро ис­пользовали для пайки медных изделий.Таким образом. Бронзовый век можно считать пе­риодом зарождения цветной металлургии. Основы из­вестных термических процессов извлечения цветных металлов из руд, механической обработки и литья были освоены к началу I тысячелетия до н.э.

markmet.ru

Древнейшие металлы человечества - Рефераты для всех

“Семь металлов создал свет по числу семи планет” — в этих немудреных стишках был заключен один из важнейших постулатов средневековой алхимии. В древности и в средние века и было известно лишь семь металлов и столько же небесных тел (Солнце, Луна и пять планет, не считая Земли). По мнению тогдашних светил науки, не увидеть в этом глубочайшую философскую закономерность могли только глупцы да невежды. Стройная алхимическая теория гласила, что золото представлено на небесах Солнцем, серебро — это типичная Луна, медь, несомненно, связана родственными узами с Венерой, железо олицетворяется Марсом, ртуть соответствует Меркурию, олово — Юпитеру, свинец — Сатурну. До XVII века металлы и обозначались в литературе соответствующими символами.

Рисунок 1 - Алхимические знаки металлов и планет

В 1789 г. французский химик Лавуазье дает перечень известных тогда 17 металлов: к перечисленным выше добавились - сурьма, мышьяк, висмут, кобальт, марганец, молибден, никель, платина, вольфрам, цинк.

В настоящее время известно более 80 металлов, большинство которых используется в технике.

С 1814 г. по предложению шведского химика Берцелиуса для обозначения металлов используются буквенные знаки.

Первым металлом, который человек научился обрабатывать, было золото. Самые древние вещи из этого металла изготовлены в Египте примерно 8 тыс. лет назад. В Европе 6 тыс. лет тому назад первыми начали изготовлять из золота и бронзы ювелирные украшения и оружие фракийцы, жившие на территории от Дуная до Днепра.

Историки выделяют три этапа в развитии человечества: каменный век, бронзовый и железный.

В 3 тыс.до н.э. люди начали широко применять в своей хозяйственной деятельности металлы. Переход от каменных орудий к металлическим имел колоссальное значение в истории человечества. Пожалуй, никакое другое открытие не привело к таким значительным общественным сдвигам.

Первым металлом, получившим широкое распространение, была медь (рисунок 2).

Рисунок 2 - Карта-схема территориально-хронологического распространения металлов в Евразии и Северной Африке

На карте хорошо видно расположение древнейших находок металлических изделий. Почти все известные артефакты, относящиеся к периоду с конца IX по VI тыс. до н.э. (т.е. до того, как в Месопотамии широко распространилась культура типа Урук), происходят всего из трех десятков памятников, рассеянных по обширной территории в 1 млн. км2. Отсюда извлечено около 230 мелких образцов, причем 2/3 из них принадлежат двум поселениям докерамического неолита — Чайоню и Ашикли.

Постоянно разыскивая необходимые им камни, наши предки, надо думать, уже в древности обратили внимание на красновато-зеленые или зеленовато-серые куски самородной меди. В обрывах берегов и скал им попадались медный колчедан, медный блеск и красная медная руда (куприт). Поначалу люди использовали их как обыкновенные камни и обрабатывали соответствующим способом. Вскоре они открыли, что при обработке меди ударами каменного молотка ее твердость значительно возрастает, и она делается пригодной для изготовления инструментов. Таким образом, вошли в употребление приемы холодной обработки металла или примитивной ковки. Затем было сделано другое важное открытие — кусок самородной меди или поверхностной породы, содержавшей металл, попадая в огонь костра, обнаруживал новые, не свойственные камню особенности: от сильного нагрева металл расплавлялся и, остывая, приобретал новую форму. Если форму делали искусственно, то получалось необходимое человеку изделие. Это свойство меди древние мастера использовали сначала для отливки украшений, а потом и для производства медных орудий труда. Так зародилась металлургия. Плавку стали осуществлять в специальных высокотемпературных печах, представлявших собой несколько измененную конструкцию хорошо известных людям гончарных печей (рисунок 3).

Рисунок 3 - Плавка металла в Древнем Египте

(дутьё подаётся мехами, сшитыми из шкур животных)

В Юго-Восточной Анатолии археологи открыли очень древнее поселение докерамического неолита Чайоню Тепеси (рисунок 4), которое поразило неожиданной сложностью каменной архитектуры. Ученые обнаружили среди руин около сотни мелких кусочков меди, а также множество осколков медного минерала — малахита, некоторые из них были обработаны в виде бусин.

Рисунок 4 - Поселение Чайоню Тепеси в Восточной Анатолии:IX-VIII тысячелетия до н.э. Здесь был обнаружен древнейший металл планеты

Вообще говоря, медь — мягкий металл, сильно уступающий в твердости камню. Но медные инструменты можно было быстро и легко затачивать. (По наблюдениям С.А.Семенова, при замене каменного топора на медный, скорость рубки увеличивалась примерно в три раза.) Спрос на металлические инструменты стал быстро расти.

Люди начали настоящую «охоту» за медной рудой. Оказалось, что она встречается далеко не везде. В тех местах, где обнаруживались богатые залежи меди, возникала их интенсивная разработка, появлялось рудное и шахтное дело. Как показывают открытия археологов, уже в древности процесс добычи руды был поставлен с большим размахом. Например, вблизи Зальцбурга, где добыча меди началась около 1600 году до Р.Х., шахты достигали глубины 100 м, а общая длина отходящих от каждой шахты штреков составляла несколько километров.

Древним рудокопам приходилось решать все те задачи, которые стоят и перед современными шахтерами: укрепление сводов, вентиляция, освещение, подъем на гора добытой руды. Штольни укрепляли деревянными подпорками. Добытую руду плавили неподалеку в невысоких глиняных печах с толстыми стенками. Подобные центры металлургии существовали и в других местах (рисунки 5,6).

Рисунок 5 – Древние рудники

Рисунок 6 – Орудия древних рудокопов

В конце 3 тыс.до н.э. древние мастера начали использовать свойства сплавов, первым из которых стала бронза. На открытие бронзы людей должна была натолкнуть случайность, неизбежная при массовом производстве меди. Некоторые сорта медных руд содержат незначительную (до 2%) примесь олова. Выплавляя такую руду, мастера заметили, что медь, полученная из нее, намного тверже обычной. Оловянная руда могла попасть в медеплавильные печи и по другой причине. Как бы то ни было, наблюдения за свойствами руд привели к освоению значения олова, которое и стали добавлять к меди, образуя искусственный сплав —бронзу. При нагревании с оловом медь плавилась лучше и легче подвергалась отливке, так как становилась более текучей. Бронзовые инструменты были тверже медных, хорошо и легко затачивались. Металлургия бронзы позволила в несколько раз повысить производительность труда во всех отраслях человеческой деятельности (рисунок 7). Само производство инструментов намного упростилось: вместо того, чтобы долгим и упорным трудом оббивать и шлифовать камень, люди наполняли готовые формы жидким металлом и получали результаты, которые и во сне не снились их предшественникам. Техника литья постепенно совершенствовалась. Сначала отливку производили в открытых глиняных или песчаных формах, представлявших собой просто углубление. Их сменили открытые формы, вырезанные из камня, которые можно было использовать многократно. Однако большим недостатком открытых форм было то, что в них получались только плоские изделия. Для отливки изделий сложной формы они не годились. Выход был найден, когда изобрели закрытые разъемные формы. Перед литьем две половинки формы крепко соединялись между собой. Затем через отверстие заливалась расплавленная бронза. Когда металл остывал и затвердевал, форму разбирали и получали готовое изделие.

Рисунок 7 – Бронзовые инструменты

Такой способ позволял отливать изделия сложной формы, но он не годился для фигурного литья. Но и это затруднение было преодолено, когда изобрели закрытую форму. При этом способе литья сначала лепилась из воска точная модель будущего изделия. Затем ее обмазывали глиной и обжигали в печи.

Воск плавился и испарялся, а глина принимала точный слепок модели. В образовавшуюся таким образом пустоту заливали бронзу. Когда она остывала, форму разбивали. Благодаря всем этим операциям мастера получили возможность отливать даже пустотелые предметы очень сложной формы. Постепенно были открыты новые технические приемы работы с металлами, такие как волочение, клепка, пайка и сварка, дополнявшие уже известные ковку и литье (рисунок 8).

Рисунок 8 – Золотая шляпа кельтского жреца

Пожалуй, самую крупную отливку из металла удалось сделать японским мастерам. Было это 1200 лет назад. Весит она 437 т и представляет собой Будду в позе умиротворения. Высота скульптуры вместе с пьедесталом — 22 м. Длина одной руки — 5м. На раскрытой ладони могли бы свободно танцевать четыре человека. Добавим, что знаменитая древнегреческая статуя — Колосс Родосский — высотой 36 м весила 12 т. Отлита она была в III в. до н. э.

С развитием металлургии бронзовые изделия, повсюду стала вытеснять каменные. Но не нужно думать, что это произошло очень быстро. Руды цветных металлов имелись далеко не везде. Причем олово встречалось гораздо реже, чем медь. Металлы приходилось транспортировать на далекие расстояния. Стоимость металлических инструментов оставалась высокой. Все это мешало их широкому распространению. Бронза не могла до конца заменить каменные инструменты. Это оказалось под силу только железу.

Кроме меди и бронзы широко использовались и другие металлы.

Древнейшими изделиями из свинца считаются найденные в Малой Азии при раскопках Чатал-Хююка бусы и подвески и обнаруженные в Ярым-Тепе ( Северная Месопотамия) печати и фигурки. Эти находки датируются VI тыс. до н. К тому же времени относятся и первые железные раритеты, представляющие собой небольшие крицы, найденные в Чатал-Хююке. Старейшие серебряные изделия обнаружены на территории Ирана и Анатолии. В Иране их нашли в местечке Тепе-Сиалк: это пуговицы, датируемые началом V тыс. до н. В Анатолии, в Бейджесултане, найдено серебряное кольцо, датируемое концом того же тысячелетия.

В доисторические времена золото получали из россыпей путем промывки. Оно выходило в виде песка и самородков. Затем начали применять рафинирование золота (удаление примесей, отделение серебра), во второй половине 2-го тысячелетия до н.э. В 13-14 веках научились применять азотную кислоту для разделения золота и серебра. А в 19 веке был развит процесс амальгамации (хоть он и был известен в древности, но нет доказательств, что его использовали для добычи золота из песков и руд).

Серебро добывали из галенита, вместе со свинцом. Затем, через столетия, их начали выплавлять совместно (примерно к 3-му тысячелетию до н.э. в Малой Азии), а широкое распространение это получило еще спустя 1500-2000 лет.

Около 640 г. до н. э. начали чеканить монеты в Малой Азии, а около 575 г. до н. э.— в Афинах. По сути дела, это начало штамповочного производства.

Олово когда-то давно выплавляли в простых шахтных печах, после чего делалась его очистка специальными окислительными процессами. Сейчас в металлургии олово получают путем переработки руд по сложным комплексным схемам.

Ну, а ртуть производили путем обжига руды в кучах, при котором она конденсировалась на холодных предметах. Затем уже появились керамические сосуды (реторты), на смену которым пришли железные. А с ростом спроса на ртуть ее стали получать в специальных печах.

Железо было известно в Китае уже в 2357 г. до н. э., а в Египте — в 2800 г. до н. э., хотя еще в 1600 г. до н. э. на железо смотрели как на диковинку. “Железный век” в Европе начался приблизительно за 1000 лет до н. э., когда в государства Средиземноморья проникло от скифов Причерноморья искусство выплавки железа.

Использование железа началось намного раньше, чем его производство. Иногда находили куски серовато-черного металла, который, перекованный в кинжал или наконечник копья, давал оружие более прочное и пластичное, чем бронза, и дольше держал острое лезвие. Затруднение состояло в том, что этот металл находили только случайно. Теперь мы можем сказать, что это было метеоритное железо. Поскольку железные метеориты представляют собой железоникелевый сплав, можно предположить, что качество отдельных уникальных кинжалов, например, могло соперничать с современным ширпотребом. Однако, та же уникальность, приводила к тому, что такое оружие оказывалось не на поле боя, а в сокровищнице очередного правителя.

Железные орудия решительно расширили практические возможности человека. Стало возможным, например, строить рубленные из брёвен дома — ведь железный топор валил дерево уже не в три, как медный, а в 10 раз быстрее, чем каменный. Широкое распространение получило и строительство из тесаного камня. Он, естественно, употреблялся и в эпоху бронзы, но большой расход сравнительно мягкого и дорогого металла решительно ограничивал такие эксперименты. Значительно расширились также и возможности земледельцев.

Впервые железо научились обрабатывать народы Анатолии. Древнегреческая традиция считала открывателем железа народ халибов, для которых в литературе использовалось устойчивое выражение «отец железа», и само название народа происходит именно от греческого слова Χάλυβας («железо»).

«Железная революция» началась на рубеже I тысячелетия до н. э. в Ассирии. С VIII века до н. э сварное железо быстро стало распространяться в Европе, в III веке до н. э. вытеснило бронзу в Галлии, во II веке новой эры появилось в Германии, а в VI веке нашей эры уже широко употреблялось в Скандинавии и в племенах, проживающих на территории будущей Руси. В Японии железный век наступил только в VIII веке нашей эры.

Вначале получали только маленькие партии железа, и в течение нескольких столетий оно стоило порой в сорок раз дороже серебра. Торговля железом восстановила процветание Ассирии. Открылся путь для новых завоеваний (рисунок 9).

Рисунок 9 - Печь для выплавки железа у древних персов

Увидеть же железо жидким металлурги смогли только в XIX веке, однако, ещё на заре железной металлургии — в начале I тысячелетия до новой эры — индийские мастера сумели решить проблему получения упругой стали без расплавления железа. Такую сталь называли булатом, но из-за сложности изготовления и отсутствия необходимых материалов в большей части мира эта сталь так и осталась индийским секретом на долгое время.

Более технологичный путь получения упругой стали, при котором не требовались ни особо чистая руда, ни графит, ни специальные печи, был найден в Китае во II веке нашей эры. Сталь перековывали очень много раз, при каждой ковке складывая заготовку вдвое, в результате чего получался отличный оружейный материал, называемый дамаском, из которого, в частности, делались знаменитые японские катаны.

2 Зарождение металлургического производства

referat-4all.ru