Древние египетские цифры. Математика в Древнем Египте
История современного города Афины.
Древние Афины
История современных Афин

Математика в Древнем Египте. Древние египетские цифры


Математика в Древнем Египте — WiKi

Данная статья — часть обзора История математики.

Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э.

Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве зданий, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому наши знания о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов — известно[1], что греческие математики учились у египтян[2].

Нам ничего не известно о развитии математических знаний в Египте как в более древние, так и в более поздние времена. После воцарения Птолемеев начинается чрезвычайно плодотворный синтез египетской и греческой культур.

Источники

  Часть папируса Ахмеса.Задачи с 49 по 55.

Основные сохранившиеся источники относятся к периоду Среднего царства, времени расцвета древнеегипетской культуры:

  • Папирус Ахмеса или папирус Ринда — наиболее объёмный манускрипт, содержащий 84 математические задачи. Написан около 1650 г. до н. э.
  • Московский математический папирус (25 задач), около 1850 г. до н. э., 544 × 8 см.
  • Так называемый «кожаный свиток» (англ.), 25 × 43 см.
  • Папирусы из Лахуна (Кахуна) (англ.), содержащие ряд фрагментов на математические темы.
  • Берлинский папирус (англ.), около 1300 года до н. э.
  • Каирские деревянные таблички (таблички Ахмима).
  • Папирус Рейснера (англ.), примерно XIX век до н. э.

От Нового царства до нас дошли несколько фрагментов вычислительного характера.

Авторы всех этих текстов нам неизвестны. Дошедшие до нас экземпляры — это в основном копии, переписанные в период гиксосов. Носители научных знаний тогда именовались писцами и фактически были государственными или храмовыми чиновниками.

Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями, пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического, арифметические прогрессии, решение уравнений первой и второй степени с одним неизвестным[3].

Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления.

Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём индуктивных обобщений и гениальных догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что математика в Древнем Египте тех лет имела или, по крайней мере, начинала приобретать теоретический характер. Так, египетские математики умели извлекать корни (целочисленные) и возводить в степень[4], решать уравнения, были знакомы с арифметической и геометрической прогрессией и даже владели зачатками алгебры: при решении уравнений специальный иероглиф «куча» обозначал неизвестное.

Нумерация (запись чисел)

  Иероглифическая запись числа 35736

Древнеегипетская нумерация, то есть запись чисел, была похожа на римскую: поначалу были отдельные значки для 1, 10, 100, … 10 000 000, сочетавшиеся аддитивно (складываясь). Египтяне писали справа налево, и младшие разряды числа записывались первыми, так что в конечном счёте порядок цифр соответствовал нашему. В иератическом письме уже есть отдельные обозначения для цифр 1-9 и сокращённые значки для разных десятков, сотен и тысяч.

Любое число в Древнем Египте можно было записать двумя способами: словами и цифрами. Например, чтобы написать число 30, можно было использовать обычные иероглифы:

или то же самое написать цифрами (три символа десятки):

  Плита с гробницы принцессы Неферетиабет (2590—2565 до н. э., Гиза). Лувр

Умножение египтяне производили с помощью сочетания удвоений и сложений. Деление заключалось в подборе делителя, то есть как действие, обратное умножению.

Особые значки обозначали дроби вида 1n{\displaystyle {\frac {1}{n}}}  и 23{\displaystyle {\frac {2}{3}}} . Однако общего понятия дроби mn{\displaystyle {\frac {m}{n}}}  у них не было, и все неканонические дроби представлялись как сумма аликвотных дробей. Типовые разложения были сведены в громоздкие таблицы.

Пример записи дробей из Папируса Ринда[5]

5 + 1⁄2 + 1⁄7 + 1⁄14 (= 5 5⁄7)

Арифметика

Знаки сложения и вычитания

Чтобы показать знаки сложения или вычитания использовался иероглиф

D54 
или
D55 

Если направление ног у этого иероглифа совпадало с направлением письма, тогда он означал «сложение», в других случаях он означал «вычитание».[6]

Сложение

Если при сложении получается число большее десяти, тогда десяток записывается повышающим иероглифом.

Например: 2343 + 1671

+

Собираем все однотипные иероглифы вместе и получаем:

Преобразуем:

Окончательный результат выглядит вот так:

Умножение

Основная статья: Умножение в Древнем Египте

Древнеегипетское умножение является последовательным методом умножения двух чисел. Чтобы умножать числа, им не нужно было знать таблицы умножения, а достаточно было только уметь раскладывать числа на кратные основания, умножать эти кратные числа и складывать.

Египетский метод предполагает раскладывание наименьшего из двух множителей на кратные числа и последующее их последовательное переумножение на второй множитель

Этот метод можно и сегодня встретить в очень отдаленных регионах.

Разложение

Египтяне использовали систему разложения наименьшего множителя на кратные числа, сумма которых составляла бы исходное число.

Чтобы правильно подобрать кратное число, нужно было знать следующую таблицу значений:

1 x 2 = 22 x 2 = 44 x 2 = 88 x 2 = 1616 x 2 = 32

Пример разложения числа 25:

  • Кратный множитель для числа «25» — это 16.
  • 25 — 16 = 9,
  • Кратный множитель для числа «9» — это 8,
  • 9 — 8 = 1,
  • Кратный множитель для числа «1» — это 1,
  • 1 — 1 = 0

Таким образом «25» — это сумма трех слагаемых: 16, 8 и 1.

Пример: умножим «13» на «238»:

1 х 238 = 238
4 х 238 = 952
8 х 238 = 1904
13 х 238 = 3094

Известно, что 13 = 8 + 4 + 1. Каждое из этих слагаемых нужно умножить на 238. Получаем: 13 × 238 = (8 + 4 + 1) × 238 = 8 x 238 + 4 × 238 + 1 × 238 = 3094.

Уравнения

  Иероглифическая запись уравнения x(23+12+17+1)=37{\displaystyle x\left({\frac {2}{3}}+{\frac {1}{2}}+{\frac {1}{7}}+1\right)=37} 

Пример задачи из папируса Ахмеса:

Найти число, если известно, что от прибавления к нему 2/3 его и вычитания из результата его трети получается 10.

Геометрия

Вычисление площадей

В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника и трапеции. Площадь произвольного четырёхугольника со сторонами a, b, c, d вычислялась приближённо как S=a+c2⋅b+d2{\displaystyle S={\frac {a+c}{2}}\cdot {\frac {b+d}{2}}} ; эта грубая формула даёт приемлемую точность, если фигура близка к прямоугольнику.

Египтяне предполагали, что площадь круга S диаметром d равна площади квадрата, сторона которого составляет 8/9 диаметра: S=(d−d9)2=(89d)2.{\displaystyle S=\left(d-{\frac {d}{9}}\right)^{2}=\left({\frac {8}{9}}d\right)^{2}.}  Это правило соответствует приближению π≈4⋅(89)2{\displaystyle \pi \approx 4\cdot \left({\frac {8}{9}}\right)^{2}}  ≈ 3,1605 (погрешность менее 1 %)[7]..

Некоторые исследователи[8] на основании 10-й задачи Московского математического папируса считали, что египтяне знали точную формулу для вычисления площади сферы, однако другие учёные с этим не согласны[9][10].

Вычисление объёмов

  Реконструкция водяных часов по чертежам из Оксиринха

Египтяне могли высчитывать объёмы параллелепипеда, цилиндра, конуса и пирамид. Для вычисление объёма усечённой пирамиды египтяне пользовались следующим правилом: пусть мы имеем правильную усечённую пирамиду со стороной нижнего основания a, верхнего b и высотой h; тогда объём вычислялся по следующей (правильной) формуле: V=(a2+ab+b2)⋅h4.{\displaystyle V=(a^{2}+ab+b^{2})\cdot {\frac {h}{3}}.} 

Древний свиток папируса, найденный в Оксиринхе, свидетельствует, что египтяне могли вычислять также объём усечённого конуса. Эти знания ими использовались для сооружения водяных часов. Так, например, известно, что при Аменхотепе III были построены водяные часы в Карнаке[источник не указан 1173 дня].

Египетский треугольник

Египетским треугольником называется прямоугольный треугольник с соотношением сторон 3:4:5. Плутарх в первом веке об этом треугольнике в сочинении «Об Исиде и Осирисе» писал: «видимо, египтяне сравнивают природу Всеобщности с красивейшим из треугольников». Возможно, именно из-за этого этот треугольник получил название египетского[11]. Действительно, греческие учёные сообщали, что в Египте для построения прямого угла использовалась верёвка, разделённая на 12 частей.

Египетский треугольник активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид. Историк Ван дер Варден попытался поставить этот факт под сомнение, однако более поздние исследования его подтвердили[12]. В любом случае, нет никаких свидетельств, что в Древнем Египте была известна теорема Пифагора в общем случае (в отличие от Древнего Вавилона)[13].

См. также

Примечания

  1. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. Указ. соч., стр. 125: «Фалес путешествовал в Египет и привёз геометрию в Элладу» (из комментария Прокла к Евклиду).
  2. ↑ «Согласно большинству мнений, геометрия была впервые открыта в Египте, и возникла при измерении площадей» // Proclus Diadochus. In primum Euclidis Elementorum commentarii. — Leipzig, 1873. — С. 64.
  3. ↑ История математики, том I, 1970, с. 21—33..
  4. ↑ История математики, том I, 1970, с. 24..
  5. ↑ Gardiner Alan H. Egyptian grammar: being an introduction to the study of hieroglyphs 3rd ed., rev. London: 1957, p. 197.
  6. ↑ Cajori, Florian. A History of Mathematical Notations. — Dover Publications, 1993. — P. pp. 229–230. — ISBN 0486677664.
  7. ↑ История математики, том I, 1970, с. 30—32..
  8. ↑ W. W. Struve. Mathematischer Papyrus des Museum in Moskau. — Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Abteilung A. — Berlin: Springer, 1930. — С. 157.
  9. ↑ История математики, том I, 1970, с. 31—32..
  10. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции, стр. 44-45
  11. ↑ Прасолов В. В. Глава 1. Древний Египет и Вавилон // История математики. — (не публиковалась), 2013. — С. 5.
  12. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. М.: Физматлит, 1959, С. 13, подстрочное примечание
  13. ↑ История математики, том I, 1970, с. 31..

Литература

  • Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — 456 с.
  • Веселовский И. Н. Египетская наука и Греция. Труды ИИЕ, 2, 1948, с. 426—498.
  • Выгодский М. Я. Арифметика и алгебра в древнем мире. — М.: Наука, 1967.
  • Депман И. Я. История арифметики. Пособие для учителей. — Изд. второе. — М.: Просвещение, 1965. — 416 с.
  • История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
  • Нейгебауер О. Лекции по истории античных математических наук. — Москва-Ленинград, 1937.
  • Раик А. Е. Две лекции о египетской и вавилонской математике // Историко-математические исследования. — М.: Физматгиз, 1959. — № 12. — С. 271-320.
  • Раик А. Е. Очерки по истории математики в древности. Саранск: Мордовское гос. изд-во, 1977.
  • Gillings R. J. Mathematics in the time of the pharaohs. Cambridge: MIT Press, 1972.
  • Rossi C. Architecture and mathematics in Ancient Egypt. Cambridge (UK): Cambridge UP, 2004.
  • Vogel K. Vorgriechische Mathematik I, Vorgeschichte und Ägypten. Hannover: Schrödel, 1958.

Ссылки

ru-wiki.org

Математика в Древнем Египте — ЗапоВики

Материал из ЗапоВики

Математика в Древнем Египте

Египтяне использовали математику, чтобы вычислять вес тел, площади посевов и объемы зернохранилищ, размеры податей и количество камней, требуемое для возведения тех или иных сооружений. Наше знание древнеегипетской математики основано главным образом на двух папирусах, датируемых примерно 1700 до н.э. Излагаемые в этих папирусах математические сведения восходят к еще более раннему периоду – около 3500 до н.э. В папирусах можно найти также задачи, связанные с определением количества зерна, необходимого для приготовления заданного числа кружек пива, а также более сложные задачи, связанные с различием в сортах зерна; для этих случаев вычислялись переводные коэффициенты. Но главной областью применения математики была астрономия, точнее расчеты, связанные с календарем. Календарь использовался для определения дат религиозных праздников и предсказания ежегодных разливов Нила. Однако уровень развития астрономии в Древнем Египте намного уступал уровню ее развития в Вавилоне.

Египетские изображение.jpg Древний Египет 2.jpg

Древнеегипетская письменность основывалась на иероглифах. Система счисления того периода также уступала вавилонской. Египтяне пользовались непозиционной десятичной системой, в которой числа от 1 до 9 обозначались соответствующим числом вертикальных черточек, а для последовательных степеней числа 10 вводились индивидуальные символы. Последовательно комбинируя эти символы, можно было записать любое число. С появлением папируса возникло, так называемое, иератическое письмо – скоропись, способствовавшее, в свою очередь, появлению новой числовой системы. Для каждого из чисел от 1 до 9 и для каждого из первых девяти кратных чисел 10, 100 и т.д. использовался специальный опознавательный символ. Дроби записывались в виде суммы дробей с числителем, равным единице. С такими дробями египтяне производили все четыре арифметические операции, но процедура таких вычислений оставалась очень громоздкой. Геометрия, у египтян, сводилась к вычислениям площадей прямоугольников, треугольников, трапеций, круга, а также формулам вычисления объемов некоторых тел. Надо сказать, что математика, которую египтяне использовали при строительстве пирамид, была простой и примитивной. Задачи и решения, приведенные в папирусах, сформулированы чисто рецептурно, без каких бы то ни было объяснений. Египтяне имели дело только с простейшими типами квадратных уравнений и арифметической и геометрической прогрессиями, а потому и те общие правила, которые они смогли вывести, были также самого простейшего вида. Ни вавилонская, ни египетская математики не располагали общими методами; весь свод математических знаний представлял собой скопление эмпирических формул и правил. Хотя майя, жившие в Центральной Америке, не оказали влияния на развитие математики, их достижения, относящиеся примерно к 4 в., заслуживают внимания. Майя, по – видимому, первыми использовали специальный символ для обозначения нуля в своей двадцатеричной системе. У них были две системы счисления: в одной применялись иероглифы, а в другой, более распространенной, точка обозначала единицу, горизонтальная черта – число 5, а символ обозначал нуль. Позиционные обозначения начинались с числа 20, а числа записывались по вертикали сверху вниз. В те времена бумаги еще нигде не было. В Месопотамии писали, например, на табличках из сырой глины, которые потом обжигали. В некоторых странах писали на пергаменте. Египтяне же изобрели дешевый и удобный писчий материал, по своим качествам очень близкий к бумаге – листы из папируса, которые можно было склеивать в свитки любой длины. Ученые долгие годы пытались разгадать секрет древних мастеров. Он должен был быть простым, так как папируса требовалось много. Папирус раньше обильно рос в болотистых районах Нижнего Египта, где теперь его нет. Он играл в Египте огромную роль: из него изготовляли веревки, корзины, картонаж, плетенки, лодки и т.д., но главная ценность – изготовление материала для письма. Папирус рос очень быстро, давая новые побеги круглый год. По берегам Нила были густые заросли папируса высотой до 2 – 3 метров. Собирали папирус ранним утром, затем отвозили в мастерскую. Привезенные стебли складывали на землю и, прежде чем палящее солнце успевало подсушить их, быстро нарезали на большие куски. Затем мастера специальными ножами осторожно сдирали зеленую кожицу со стеблей, обнажая мягкую белую сердцевину. Теперь сердцевину надо было разрезать вдоль на несколько тонких полосок, но очень точно и осторожно. На ровном специальном столе полоски укладывали в ряд, слегка внахлест, на кусок плотной ткани, тщательно подгоняя друг к другу. Поверх первого ряда, поперек него, клали второй, точно такой же ряд полосок. Все это покрывалось тонкой материей хорошо впитывающей влагу, и в течение часа или двух работники непрерывно колотили по ней деревянными молотками, стараясь ничего не сдвинуть с места. Затем они осторожно клали на ткань легкий пресс и оставляли на несколько часов. За это время сок, выступивший из папируса, крепко склеивал полоски, и они превращались в сплошной лист тонкой белой бумаги. Когда лист просыхал, его аккуратно нарезали на куски и склеивали в полосы разной длины, обычно от метра до двух, но нередко хозяин мастерской получал заказы и на очень большие папирусы - до двадцати метров. Папирус разглаживали круглыми гладкими камнями или лопаточками из слоновой кости, чтобы тростниковое перо могло легко двигаться по нему, сворачивали в трубочки и перевязывали шнурами. На следующий день его везли на продажу.Папирус.jpg

Папирус берегли: часто старые записи аккуратно смывались, листок высушивался, и затем опять использовался. Когда листок папируса исписывали до конца, к нему подклеивали другой. Книга получалась все длиннее. Для хранения ее сворачивали в свиток. Некоторые книги получались до сорока метров. Математические папирусы показывают высочайшие достижения Древнего Египта в области математического знания. Однако они не дают представления о степени осмысления этого знания самими египтянами – интересовало ли их теоретическое развитие математики или же они заботились только о ее практическом применении? Кроме того, нет неоспоримых доказательств, что пропорции архитектурных сооружений, таких как пирамиды, не были результатом богатого опыта и чутья строителей, а заранее просчитывались. Но одно, несомненно: за тысячу лет до Архимеда и Пифагора египтяне открыли и успешно применяли на практике законы, вошедшие в сокровищницу античной, а затем и мировой математической мысли. Математические папирусы являются свидетельством знакомства египтян со стереометрией. Описаны способы вычисления объема цилиндра, призмы и пирамиды: «Если тебе называют усеченную пирамиду 6 локтей в высоту, 4 – в нижней стороне, 2 – в верхней, вычисляй с четырех. Возводя их в квадрат, получаешь 16. Удвой 4, получишь 8. Сложи 16 с этими 8 и с этими 4. Получается 28. Вычисли 1/3 от 6. Получается 2. Вычисли 28 2 раза. Получается 56. Смотри! Он есть 56. Ты нашел правильно» (Московский папирус). Наши познания о древнеегипетской математике основаны главным образом на двух больших папирусах математического характера и на нескольких небольших отрывках. Один из больших папирусов называется математическим папирусом Ринда (по имени обнаружившего его учёного) и находится в Лондоне. Он примерно 5,5 м длины и 0,32 ширины. Другой большой папирус , почти такой же длины и 8 см ширины, находится в Москве. Содержащиеся в них математические сведения относятся примерно к 2000 г. до н.э. При изучении содержания математических папирусов обнаруживается следующий уровень математических знаний древних египтян. Ко времени написания этих документов уже сложилась определённая система счисления: десятичная иероглифическая. Алгоритмические числа записывались комбинациями узловых чисел. С помощью этой системы египтяне справлялись со всеми вычислениями, в которых употребляются целые числа. Что касается дробей, то египтяне создали специальный аппарат, опиравшийся на понимание дроби только как доли единицы.Древний Египет.jpg

Сложились также определённые приёмы производства математических операций с целыми числами и дробями. Общей для всей вычислительной техники египтян является её аддитивный характер, при котором все процедуры по возможности сводятся к сложению. При умножении, например, преимущественно используется способ постепенного удвоения одного из сомножителей и складывания подходящих частных произведений. При делении также используется процедура удвоения и последовательного деления пополам. Деление, по-видимому, было самой трудной математической операцией для египтян. Здесь наблюдается самое большое разнообразие приёмов. Так, иногда в качестве промежуточного действия применялось нахождение двух третей или одной десятой доли числа и т.п. При сложении дробей, имеющих разные знаменатели, египтяне использовали умножение их на вспомогательные числа. Способы подбора этих вспомогательных чисел не дают, однако, права судить об этом приёме как о единообразном процессе, адекватном способу приведения дробей к общему знаменателю. Исторические реконструкции во многом ещё спорны и не подтверждены достаточным количеством фактов. Материалы, содержащиеся в папирусах, позволяют утверждать , что за 20 веков до нашей эры в Египте начали складываться элементы математики как науки. Эти элементы ещё только начинают выделяться из практических задач, целиком подчинены их содержанию. Техника вычислений ещё примитивна, методы решения задач не единообразны. Однако материалов, которые позволяли бы судить о развитии математики в Египте, ещё недостаточно.

Литература

Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 1959Юшкевич А.П. История математики в средние века. М., 1961Даан-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики. М., 1986Клейн Ф. Лекции о развитии математики в XIX столетии. М., 1989Рыбников К.А. История математики 1917г. М., 1974--Іріна 08:14, 14 июня 2013 (EEST)

wiki.ciit.zp.ua

Так считали древние. Египет / Хабр

Мало кто задумывается, что те приемы, которые мы используем для письма и счета формировались на протяжении многих тысяч лет. Нам они кажутся очевидными, ну, подумаешь, умножить в столбик, перенести все члены с неизвестным на одну сторону. Ведь это так просто! На самом деле это огромные интеллектуальные завоевания человечества, которые часто были недоступны умнейшим людям прошлого. Я собираюсь (если хватит терпения и времени) написать несколько заметок о том, как считали в прошлом. В этой я расскажу про то, как считали египтяне.

Меня всегда немного интересовал древний Египет. Ну, во-первых, Египет — одно из первых государств, о котором мы много знаем, и кроме того, это очень великое государство, которое оставило огромное наследие. Я не имею в виду огромные размеры пирамид. Даже наша письменность и латинская, и кириллическая восходит к древнему Египту. Мне также всегда нравилась египетская скульптура, и мода брить голову у женщин и мужчин. Это кажется очень современным. Но это статья не о художественной культуре. Так что приступим.

Цифры и числа

Египтяне пользовались непозиционной десятичной системой счисления. Выглядели цифры примерно так:

Эти цифры относятся к т.н. иероглифическому письму, которое позже было заменено иератическим. Я очень люблю иератическое письмо. Оно выглядит весьма стильно. Но здесь я буду использовать иероглифическое начертание. Все целые числ образовывались путем повторения знаков, приведенных выше (и некоторых других для еще более высоких разрядов). Например, 3215 будет:

Очень ясная система, хотя не слишком лаконичная. Ее просто освоить, но числа получаются не слишком удобными. С первого взгляда трудно уловить точное значение числа. Писали египтяне в разных направлениях, но я здесь пишу как привычно нам слева на право. Теперь насчет дробей. Для трех дробей существовали специальные значки:

Все остальные дроби, у которых в числителе была единица, обозначались знаменателем и похожим на глаз значком сверху. Например, ниже я написал 1/14 Все правильные дроби записывались как сумма таких дробей. Например: На одном сайте я прочитал, что «в некоторых случаях» египетские дроби «лучше наших». И даже в английской вики, есть такой чудный пример: «Египетские дроби иногда легче позволяют сравнить размер дробей. Например, если некто хочет знать, больше ли 4/5, чем ¾ он может превратить их в египетские дроби:4/5= 1/2 + 1/4+ 1/20 3/4= 1/2 +1/4» Мне этот «легкий способ» напоминает шутку про Фейнмана, который ради какой-то задачи школьного курса просуммировал ряды в уме. Я гуманитарий и особо не умею считать, но сравнивать в уме обычные дроби в их нормальной записи мне кажется гораздо проще, чем переводить их в египетский вид. Возможно, для египтян сравнения такого рода и были более удобны, так как наших дробей они не знали.

Сложение и умножение

Ну, вот мы и переходим к главному. Как египтяне считали? Сложение и вычитание целых чисел у них происходило также как и у нас, а может быть даже проще, им ведь просто нужно было объединить иероглифы и учесть смену разрядов. А как обстоит дело с умножением и делением? В древнеегипетском мире это была вовсе не тривиальная задача. Египтяне использовали такой алгоритм для умножения. В два столбца писались числа. Первый столбец начинался с единицы, а второй с множимого. Затем каждое число в столбце удваивалось до тех пор, пока из некоторых чисел первого столбца не удастся сложить множитель. Вы поняли? На примере понятно лучше. Например, 7 на 22

8 уже больше, чем 7, поэтому табличка заканчивается на четырех. Теперь 1+2+4=7 значит 22+44+88=154. Хотите верьте, хотите нет но 154 это верный ответ. Конечно в египетской записи (я не знаю, как она точно выглядела) такие вычисления были проще, ведь умножать на 2 в египетской записи очень просто. Еще пример, немного сложнее: 13 умножить на 57
1* 57
2 114
4* 228
8* 456
1+4+8=13 и 57+228+456=741 Иногда, чтобы ускорить процесс прибегали к умножению на 10. Может возникнуть вопрос, всегда ли можно представить множитель в таком виде? Да, на самом деле мы фактически имеем дело с двоичной системой счисления: 1*20+0*21+1*22+1*23 т.е. 1+100+ 1000=1101 Деление выполнялось при помощи схожего алгоритма. Разделим 238 на 17: Опять составляем табличку с одной стороны, которой стоит 17 с другой единица. Процесс удвоения останавливается на числе, которое при удвоении будет больше делимого. Здесь нужно составить число 238 из чисел второго столбца, начиная с конца. 136+68+34=238, значит нам нужны числа 8+4+2=14. Итак, 238/17 =14 К несчастью, деление не всегда приводит к целому числу. В ряде случаев это было довольно сложно. Я покажу простой пример, заимствованный мной из одной книги. Разделим 213 на 8 Сначала все, как обычно.
1 8
2* 16
4 32
8* 64
16* 128
Здесь мы останавливемся, ведь 128 на 2 = 256, а это больше 213. 128+64 Мы делим делитель по полам, используя уже привычную таблицу. К счастью 5 это 1+4. Таким образом, окончательный результат будет213/8 = 2+8+16+1/2+1/8 =26+1/2+1/8 Сейчас мы имеем удачный случай, но так получается не всегда.

habr.com


Смотрите также