Софизмы древние примеры. Софизмы. Понятие, примеры. Логические парадоксы. Понятие, примеры
История современного города Афины.
Древние Афины
История современных Афин

Софизм - что это? Примеры софизмов. Софизмы древние примеры


Софизм - что это? Примеры софизмов

Софизм в переводе с греческого означает дословно: уловка, выдумка или мастерство. Этим термином называют утверждение, являющееся ложным, но не лишенным элемента логики, за счет чего при поверхностном взгляде на него кажется верным. Возникает вопрос: софизм – что это и чем он отличается от паралогизма? А различие в том, что софизмы основаны на сознательном и преднамеренном обмане, нарушении логики.

История появления термина

Софизмы и парадоксы были замечены еще в древности. Один из отцов философии - Аристотель называл это явление мнимыми доказательствами, которые появляются из-за недостатка логического анализа, что приводит к субъективности всего суждения. Убедительность доводов является всего лишь маскировкой для логической ошибки, которая в каждом софистском утверждении, бесспорно, есть.

Софизм – что это такое? Чтобы ответить на этот вопрос, нужно рассмотреть пример древнего нарушения логики: «Имеешь то, что не терял. Терял рога? Значит, у тебя есть рога». Здесь есть упущение. Если первую фразу видоизменить: «Имеешь все, что не терял», тогда вывод становится верным, но довольно неинтересным. Одним из правил первых софистов было утверждение о том, что необходимо наихудший аргумент представить как лучший, а целью спора являлась только победа в нем, а не поиск истины.

Софисты утверждали, что любое мнение может быть законным, тем самым отрицая закон противоречия, позднее сформулированный Аристотелем. Это породило многочисленные виды софизмов в разных науках.

софизм что это

Источники софизмов

Источниками софизмов может выступать терминология, которая используется во время спора. Многие слова имеют несколько смыслов (доктор может быть врачом или же научным сотрудником, имеющим ученую степень), за счет чего и происходит нарушение логики. Софизмы в математике, например, основаны на изменении чисел путем перемножения их и последующего сравнения исходных и полученных данных. Неправильное ударение тоже может быть оружием софиста, ведь множество слов при изменении ударения меняют и смысл. Построение фразы иногда очень запутанно, как, например, два умножить на два плюс пять. В данном случае непонятно имеется ли в виду сумма двойки и пятерки, умноженная на два, или же сумма произведения двоек и пятерки.

Сложные софизмы

Если рассматривать более сложные логические софизмы, то стоит привести пример с включением во фразу посылки, которую еще нужно доказать. То есть сам аргумент не может являться таковым до тех пор, пока он не доказан. Еще одним нарушением считается критика мнения оппонента, которая направлена на ошибочно приписываемые ему суждения. Такая ошибка широко распространена в повседневной жизни, где люди приписывают друг другу те мнения и мотивы, которые им не принадлежат.

Кроме того, фраза, сказанная с некоторой оговоркой, может подменяться на выражение, таковой оговорки не имеющее. За счет того, что внимание не заостряется на факте, который был упущен, утверждение выглядит вполне обоснованным и логически правильным. Так называемая женская логика тоже относится к нарушениям нормального хода рассуждения, так как представляет собой сооружение цепочки мыслей, которые не связаны друг с другом, но при поверхностном рассмотрении связь может обнаруживаться.

Причины софизмов

К психологическим причинам софизмов относят интеллект человека, его эмоциональность и степень внушаемости. То есть более умному человеку достаточно завести своего оппонента в тупик, чтобы тот согласился с предложенной ему точкой зрения. Подверженный аффективным реакциям человек может поддаться своим чувствам и пропустить софизмы. Примеры таких ситуаций встречаются везде, где есть эмоциональные люди.

Чем более убедительной будет речь человека, тем больше шанс, что окружающие не заметят ошибок в его словах. На это и рассчитывают многие из тех, кто пользуется такими приемами в споре. Но для полного понимания этих причин стоит разобрать их более подробно, так как софизмы и парадоксы в логике часто проходят мимо внимания неподготовленного человека.

Интеллектуальные и аффективные причины

Развитая интеллектуальная личность имеет возможность следить не только за своей речью, но еще и за каждым аргументом собеседника, обращая при этом свое внимание на аргументы, приводимые собеседником. Такого человека отличает больший объем внимания, умение искать ответ на неизвестные вопросы вместо следования заученным шаблонам, а также большой активный словарный запас, при помощи которого мысли выражаются наиболее точно.

Объем знаний тоже имеет немаловажное значение. Умелое применение такого вида нарушений, как софизмы в математике, недоступно малограмотному и не развивающемуся человеку.

К таковым относится боязнь последствий, из-за чего человек не способен уверенно высказать свою точку зрения и привести достойные аргументы. Говоря об эмоциональных слабостях человека, нельзя забывать о надежде найти в любой получаемой информации подтверждение своих взглядов на жизнь. Для гуманитария могут стать проблемой математические софизмы.

Волевые

Во время обсуждения точек зрения происходит воздействие не только на разум и чувства, но еще и на волю. Уверенный в себе и напористый человек с большим успехом отстоит свою точку зрения, даже если та была сформулирована с нарушением логики. Особенно сильно такой прием действует на большие скопления людей, подверженных эффекту толпы и не замечающих софизм. Что это дает оратору? Возможность убедить практически в чем угодно. Еще одной особенностью поведения, позволяющей победить в споре при помощи софизма, является активность. Чем более пассивен человек, тем больше шансов убедить его в своей правоте.

Вывод – эффективность софистских высказываний зависит от особенностей обоих людей, задействованных в разговоре. При этом эффекты всех рассмотренных качеств личности складываются и влияют на исход обсуждения проблемы.

Примеры нарушений логики

Софизмы, примеры которых будут рассмотрены ниже, сформулированы довольно давно и являются простыми нарушениями логики, использующимися лишь для тренировки умения спорить, так как увидеть несоответствия в этих фразах достаточно легко.

Итак, софизмы (примеры):

Полное и пустое – если две половины равны, то и две целые части тоже являются одинаковыми. В соответствии с этим – если полупустое и полуполное одинаково, значит, пустое равно полному.

софизмы в математике

Еще один пример: «Знаешь о чем хочу у тебя спросить?» - «Нет». – «А о том, что добродетель - это хорошее качество человека?» - «Знаю». – «Получается, что ты не знаешь то, что знаешь».

Лекарство, помогающее больному, это добро, а чем больше добра, тем лучше. То есть лекарств можно принимать как можно больше.

Очень известный софизм гласит: «У этой собаки есть дети, значит, она является отцом. Но так как она твоя собака, то значит, она твой отец. Кроме этого, если ты бьешь собаку, то ты бьешь отца. А еще являешься братом щенят».

Логические парадоксы

Софизмы и парадоксы – два разных понятия. Парадоксом называется суждение, которое может доказать, что суждение одновременно является как ложным, так и истинным. Это явление разделяется на 2 вида: апория и антиномия. Первое подразумевает появление вывода, который противоречит опыту. Примером служит парадокс, сформулированный Зеноном: быстроногий Ахиллес не в состоянии догнать черепаху, так как она при каждом последующем шаге будет отдаляться от него на некоторое расстояние, не давая ему догнать себя, ведь процесс деления отрезка пути бесконечен.

софизмы примеры

Антиномия же – это парадокс, предполагающий наличие двух взаимоисключающих суждений, которые одновременно истинны. Фраза «я лгу», может являться как истиной, так и ложью, но если это правда, то человек, произносящий ее, говорит истину и не считается лжецом, хотя фраза подразумевает обратное. Существуют интересные логические парадоксы и софизмы, часть которых будет описана ниже.

Логический парадокс «Крокодил»

У жительницы Египта крокодил выхватил ребенка, но, сжалившись над женщиной, после ее мольбы он выдвинул условия: если она угадает, вернет ли он ей ребенка или нет, то он, соответственно, отдаст или не отдаст его. После этих слов мать задумалась и сказала, что ребенка он ей не отдаст.

На это крокодил ответил: ребенка ты не получишь, ведь в случае, когда сказанное тобой правда, я не могу отдать тебе ребенка, так как если отдам, твои слова уже не будут истинными. А если это неправда – я не могу вернуть ребенка по уговору.

После чего мать оспорила его слова, говоря, что он в любом случае должен отдать ей ребенка. Слова обосновывались следующими доводами: если ответ был правдой, то по договору крокодил должен был вернуть отнятое, а в противном случае он также обязан отдать ребенка, ведь отказ будет означать, что слова матери справедливы, а это опять же обязывает вернуть малыша.

геометрические софизмы

Логический парадокс «Миссионер»

Попав к людоедам, миссионер понял, что его скоро съедят, но при этом у него была возможность выбрать – сварят его или зажарят. Миссионер должен был произнести утверждение, и если оно окажется истинным, тогда его приготовят первым способом, а ложь приведет ко второму способу. Сказав фразу, «вы зажарите меня», миссионер тем самым обрекает людоедов на неразрешимую ситуацию, в которой они не могут решить каким способом его приготовить. Зажарить его людоеды не могут – в этом случае он окажется прав и они обязаны сварить миссионера. А если неправ – то зажарить, но и этого сделать не получится, так как тогда слова путешественника будут истинными.

Нарушения логики в математике

Обычно математические софизмы доказывают равенство неравных чисел или арифметических выражений. Один из самых простых образцов – сравнение пятерки и единицы. Если от 5 отнять 3, то получится 2. При вычитании 3 из 1 получается -2. При возведении обоих полученных чисел в квадрат получаем одинаковый результат. Таким образом, первоисточники этих операций равны, 5=1.

математические софизмы

Рождаются математические задачи-софизмы чаще всего благодаря преобразованию исходных чисел (например – возведению в квадрат). В итоге получается, что результаты этих преобразований равны, из чего делается вывод о равенстве исходных данных.

Задачи с нарушенной логикой

Почему брусок остается в состоянии покоя, когда на нем стоит гиря весом в 1 кг? Ведь в данном случае на него действует сила тяжести, разве это не противоречит первому закону Ньютона? Следующая задача – натяжение нити. Если закрепить гибкую нить одним концом, приложив ко второму силу F, то натяжение в каждом ее участке станет равным F. Но, так как она состоит из бесчисленного количества точек, то и сила, приложенная ко всему телу, будет равна бесконечно большому значению. Но согласно опыту, этого не может быть в принципе. Математические софизмы, примеры с ответами и без можно найти в книге под авторством А.Г. и Д.А. Мадера.

софизмы и парадоксы

Действие и противодействие. Если третий закон Ньютона справедлив, то какая бы сила ни была приложена к телу, противодействие будет удерживать его на месте и не даст сдвинуться.

Плоское зеркало меняет местами правую и левую сторону отображаемого в нем предмета, тогда почему верх и низ не изменяются?

Софизмы в геометрии

Умозаключения, имеющие название геометрические софизмы, обосновывают какой-либо неверный вывод, связанный с действиями над геометрическими фигурами или их анализом.

Типичный пример: спичка длиннее, чем телеграфный столб, причем вдвое.

Длину спички будет обозначать а, длину столба – б. Разность между этими величинами – c. получается, что b - a = c, b = a + c. Если данные выражения перемножить, получится следующее: b2 - ab = ca + c2. При этом из обеих частей выведенного равенства возможно вычесть составляющую bc. Получится следующее: b2 - ab - bc = ca + c2 - bc, или b (b - a - c) = - c (b - a - c). Откуда b = - c, но c = b - a, поэтому b = a - b, или a = 2b. То есть спичка и правда вдвое длиннее столба. Ошибка в данных вычислениях заключается в выражении (b – a - c), которое равно нулю. Такие задачи-софизмы обычно путают школьников или людей, далеких от математики.

Философия

Софизм как философское направление возник примерно во второй половине V века до н. э. Последователями этого течения были люди, относящие себя к мудрецам, так как термин «софист» означал «мудрец». Первым человеком, который себя так называл, был Протагор. Он и его современники, придерживающиеся софистских взглядов, считали, что все субъективно. Согласно представлениям софистов, человек есть мера всех вещей, а это значит, что любое мнение истинно и никакая точка зрения не может считаться научной или правильной. Это касалось и религиозных воззрений.

 софизмы и парадоксы в логике

Примеры софизмов в философии: девушка - не человек. Если допустить, что девушка является человеком, то верно утверждение, что она молодой человек. Но так как молодой человек – это не девушка, то девушка - не человек. Наиболее известный софизм, который к тому же содержит долю юмора, звучит так: чем больше самоубийц, тем меньше самоубийц.

Софизм Эватла

Человек по имени Эватл брал уроки софизма у известного мудреца Протагора. Условия были таковы: если ученик после получения навыков спора выиграет в судебном процессе, то заплатит за обучение, иначе оплаты не будет. Подвох заключался в том, что после обучения ученик просто не стал участвовать ни в одном процессе и, таким образом, не был обязан платить. Протагор пригрозил подачей жалобы в суд, говоря, что ученик заплатит в любом случае, вопрос лишь в том, будет ли это приговор суда или же ученик выиграет дело и обязан будет оплатить обучение.

Эватл не согласился, обосновав тем, что если его присудят к оплате, то по договору с Протагором, проиграв дело, платить он не обязан, но при победе согласно приговору суда он также не должен учителю деньги.

Софизм «приговор»

Примеры софизмов в философии дополняются «приговором», в котором говорится о том, что некого человека приговорили к смерти, но сообщили об одном правиле: казнь произойдет не сразу, а в течение недели, причем день казни не будет сообщен заранее. Услышав это, приговоренный начал рассуждать, стараясь понять, в какой же день произойдет страшное для него событие. Согласно его соображениям, если казнь не произойдет до самого воскресенья, то уже в субботу он будет знать, что его казнят завтра – то есть правило, о котором ему сказали, уже нарушено. Исключив воскресенье, приговоренный точно так же подумал и о субботе, ведь если он знает, что в воскресенье его не казнят, то при условии, что до пятницы казни не произойдет, суббота тоже исключается. Обдумав все это, он пришел к выводу, что его не могут казнить, так как правило будет нарушено. Но в среду был удивлен, когда появился палач и сделал свое ужасное дело.

Притча о железной дороге

Примером такого вида нарушений логики, как экономические софизмы, является теория о постройке железной дороги из одного крупного города в другой. Особенностью этого пути служил разрыв на небольшой станции между двумя пунктами, которые соединяла дорога. Этот разрыв, с экономической точки зрения, помог бы малым городам за счет привнесения денег проезжих людей. Но на пути двух больших городов существует не один населенный пункт, то есть разрывов в железной дороге, для извлечения максимальной прибыли, должно быть много. Это означает построение железной дороги, которой на самом деле не существует.

Причина, препятствие

Софизмы, примеры которых рассмотрены Фредериком Бастиа, стали очень известны, а особенно нарушение логики «причина, препятствие». Первобытный человек не имел практически ничего и для того, чтобы что-то получить, ему приходилось преодолевать множество препятствий. Даже простой пример с преодолением расстояния показывает, что индивиду будет очень сложно самостоятельно преодолеть все барьеры, встающие на пути любого одиночного путешественника. Но в современном обществе решением проблем преодоления препятствий занимаются специализированные на таком занятии люди. Причем эти препятствия превратились для них в способ заработка, то есть обогащения.

Каждое новое созданное препятствие дает работу множеству людей, из этого следует, что препятствия должны быть, чтобы общество и каждый человек в отдельности обогащались. Так какой же вывод верен? Препятствие или его устранение является благом для человечества?

Аргументы в дискуссии

Доводы, приводимые людьми во время обсуждения, разделяются на объективные и некорректные. Первые направлены на разрешение проблемной ситуации и нахождение правильного ответа, в то время как вторые преследуют цель победить в споре и не более того.

Первым видом некорректных аргументов можно считать аргумент к личности того человека, с кем ведется спор, обращение внимания на его черты характера, особенности внешности, убеждения и прочее. Благодаря такому подходу спорящий человек воздействует на эмоции собеседника, тем самым убивая в нем разумное начало. Существуют также аргументы к авторитету, силе, выгоде, тщеславию, верности, невежеству и здравому смыслу.

Итак, софизм – что это? Прием, помогающий в споре, или бессмысленные рассуждения, не дающие никакого ответа и потому не имеющие ценности? И то,и другое.

загрузка...

worldfb.ru

Софизм - это... Что такое Софизм?

Софи́зм (от греч. σόφισμα, «мастерство, умение, хитрая выдумка, уловка, мудрость») — ложное высказывание, которое, тем не менее, при поверхностном рассмотрении кажется правильным. Софизм основан на преднамеренном, сознательном нарушении правил логики. Это отличает его от паралогизма и апории, которые могут содержать непреднамеренную ошибку либо вообще не иметь логических ошибок, но приводить к явно неверному выводу.

История

Аристотель называл софизмом «мнимые доказательства», в которых обоснованность заключения кажется верной и обязана чисто субъективному впечатлению, вызванному недостаточностью логического или семантического анализа. Убедительность на первый взгляд многих софизмов, их «логичность» обычно связана с хорошо замаскированной ошибкой — семиотической: за счёт метафоричности речи, омонимии или полисемии слов, амфиболий и пр., нарушающих однозначность мысли и приводящих к смешению значений терминов, или же логической: подмена основной мысли (тезиса) доказательства, принятие ложных посылок за истинные, несоблюдение допустимых способов рассуждения (правил логического вывода), использование «неразрешённых» или даже «запрещённых» правил или действий, например деления на нуль в математических софизмах (Последнюю ошибку можно считать и семиотической, так как она связана с соглашением о «правильно построенных формулах»).

Вот один из древних софизмов («рогатый»), приписываемый Эвбулиду: «Что ты не терял, то имеешь. Рога ты не терял. Значит, у тебя рога». Здесь маскируется двусмысленность большей посылки. Если она мыслится универсальной: «Всё, что ты не терял…», то вывод логически безупречен, но неинтересен, поскольку очевидно, что большая посылка ложна; если же она мыслится частной, то заключение не следует логически. Последнее, однако, стало известно лишь после того, как Аристотель сформулировал логику.

А вот современный софизм, обосновывающий, что с возрастом «годы жизни» не только кажутся, но и на самом деле короче: «Каждый год вашей жизни — это её 1/n часть, где n — число прожитых вами лет. Но n + 1>n. Следовательно, 1 / (n + 1) < 1 / n».

Исторически с понятием «софизм» неизменно связывают идею о намеренной фальсификации, руководствуясь признанием Протагора о том, что задача софиста — представить наихудший аргумент как наилучший путём хитроумных уловок в речи, в рассуждении, заботясь не об истине, а об успехе в споре или о практической выгоде. (Известно, что сам Протагор оказался жертвой «софизма Эватла»). С этой же идеей обычно связывают и «критерий основания», сформулированный Протагором: мнение человека есть мера истины. Уже Платон заметил, что основание не должно заключаться в субъективной воле человека, иначе придётся признать законность противоречий (что, между прочим, и утверждали софисты), а поэтому любые суждения считать обоснованными. Эта мысль Платона была развита в аристотелевском «принципе непротиворечия» (см. Логический закон) и, уже в современной логике, — в истолкованиях и требовании доказательств «абсолютной» непротиворечивости. Перенесённая из области чистой логики в область «фактических истин», она породила особый «стиль мышления», игнорирующий диалектику «интервальных ситуаций», то есть таких ситуаций, в которых критерий Протагора, понятый, однако, более широко, как относительность истины к условиям и средствам её познания, оказывается весьма существенным. Именно поэтому многие рассуждения, приводящие к парадоксам и в остальном безупречные, квалифицируются как софизмы, хотя по существу они только демонстрируют интервальный характер связанных с ними гносеологических ситуаций. Так, софизм «куча» («Одно зерно — не куча. Если n зёрен не куча, то n + 1 зерно — тоже не куча. Следовательно, любое число зёрен — не куча») — это лишь один из «парадоксов транзитивности», возникающих в ситуации «неразличимости». Последняя служит типичным примером интервальной ситуации, в которой свойство транзитивности равенства при переходе от одного «интервала неразличимости» к другому, вообще говоря, не сохраняется, и поэтому принцип математической индукции в таких ситуациях неприменим. Стремление усматривать в этом свойственное опыту «нетерпимое противоречие», которое математическая мысль «преодолевает» в абстрактном понятии числового континуума (А. Пуанкаре), не обосновывается, однако, общим доказательством устранимости подобного рода ситуаций в сфере математического мышления и опыта. Достаточно сказать, что описание и практика применения столь важных в этой сфере «законов тождества» (равенства) так же, вообще говоря, как и в эмпирических науках, зависит от того, какой смысл вкладывают в выражение «один и тот же объект», какими средствами или критериями отождествления при этом пользуются. Другими словами, идёт ли речь о математических объектах или, к примеру, об объектах квантовой механики, ответы на вопрос о тождестве неустранимым образом связаны с интервальными ситуациями. При этом далеко не всегда тому или иному решению этого вопроса «внутри» интервала неразличимости можно противопоставить решение «над этим интервалом», то есть заменить абстракцию неразличимости абстракцией отождествления. А только в этом последнем случае и можно говорить о «преодолении» противоречия.

По-видимому, первыми, кто понял важность семиотического анализа софизмов, были сами софисты. Учение о речи, о правильном употреблении имён Продик считал важнейшим. Анализ и примеры софизмов часто встречаются в диалогах Платона. Аристотель написал специальную книгу «О софистических опровержениях», а математик Евклид — «Псевдарий» — своеобразный каталог софизмов в геометрических доказательствах. Сочинение «Софизмы» (в двух книгах) написал ученик Аристотеля Феофраст (D.L. V. 45). В средние века в Западной Европе составлялись целые коллекции софизмов. Например, собрание, приписываемое английскому философу и логику XIII века Ричарду Софисту, насчитывает свыше трехсот софизмов. Некоторые из них напоминают высказывания представителей древнекитайской школы имён (мин цзя).

Классификация ошибок

Логические

Так как обычно вывод может быть выражен в силлогистической форме, то и всякий софизм может быть сведён к нарушению правил силлогизма. Наиболее типичными источниками логических софизмов являются следующие нарушения правил силлогизма:

  1. Вывод с отрицательной меньшей посылкой в первой фигуре: «Все люди суть разумные существа, жители планет не суть люди, следовательно, они не суть разумные существа»;
  2. Вывод с утвердительными посылками во второй фигуре: «Все, находящие эту женщину невинной, должны быть против наказания её; вы — против наказания её, значит, вы находите её невинной»;
  3. Вывод с отрицательной меньшей посылкой в третьей фигуре: «Закон Моисеев запрещал воровство, закон Моисеев потерял свою силу, следовательно, воровство не запрещено»;
  4. Особенно распространённая ошибка quaternio terminorum, то есть употребление среднего термина в большой и в меньшей посылке не в одинаковом значении: «Все металлы — простые вещества, бронза — металл: бронза — простое вещество» (здесь в меньшей посылке слово «металл» употреблено не в точном химическом значении слова, обозначая сплав металлов): отсюда в силлогизме получаются четыре термина.

Терминологические

Грамматические, терминологические и риторические источники софизмов выражаются

В устную речь математиками введены такие слова как «сумма», «произведение», «разность». Так 5 + 2 * 2 — сумма произведения два на два и пятерки, а (5 + 2) * 2 — удвоенная сумма двух и пяти.

  • Более сложные софизмы проистекают из неправильного построения целого сложного хода доказательств, где логические ошибки являются замаскированными неточностями внешнего выражения. Сюда относятся:
    1. Petitio principii: введение заключения, которое требуется доказать, в скрытом виде в доказательство в качестве одной из посылок. Если мы, например, желая доказать безнравственность материализма, будем красноречиво настаивать на его деморализующем влиянии, не заботясь дать отчёт, почему именно материализм — безнравственная теория, то наши рассуждения будут заключать в себе petitio principii.
    2. Ignoratio elenchi заключается в том, что начав доказывать некоторый тезис, постепенно в ходе доказательства переходят к доказательству другого положения, сходного с тезисом.
    3. A dicto secundum ad dictum simpliciter подменяет утверждение, сказанное с оговоркой, на утверждение, не сопровождаемое этой оговоркой.
    4. Non sequitur представляет отсутствие внутренней логической связи в ходе рассуждения: всякое беспорядочное следование мыслей представляет частный случай этой ошибки.

Психологические

Психологические причины С. бывают троякого рода: интеллектуальные, аффективные и волевые. Во всяком обмене мыслей предполагается взаимодействие между 2 лицами, читателем и автором или лектором и слушателем, или двумя спорящими. Убедительность С. поэтому предполагает два фактора: α — психические свойства одной и β — другой из обменивающихся мыслями сторон. Правдоподобность С. зависит от ловкости того, кто защищает его, и уступчивости оппонента, а эти свойства зависят от различных особенностей обеих индивидуальностей.

Интеллектуальные причины

Интеллектуальные причины софизма заключаются в преобладании в уме лица, поддающегося С., ассоциаций по смежности над ассоциациями по сходству, в отсутствии развития способности управлять вниманием, активно мыслить, в слабой памяти, непривычке к точному словоупотреблению, бедности фактических знаний по данному предмету, лености в мышлении (ignava ratio) и т. п. Обратные качества, разумеется, являются наиболее выгодными для лица, защищающего С.: обозначим первые отрицательные качества через b, вторые соответствующие им положительные через a.

Аффективные причины

Сюда относятся трусость в мышлении — боязнь опасных практических последствий, вытекающих от принятия известного положения; надежда найти факты, подтверждающие ценные для нас взгляды, побуждающая нас видеть эти факты там, где их нет, любовь и ненависть, прочно ассоциировавшиеся с известными представлениями, и т. д. Желающий обольстить ум своего соперника софист должен быть не только искусным диалектиком, но и знатоком человеческого сердца, умеющим виртуозно распоряжаться чужими страстями для своих целей. Обозначим аффективный элемент в душе искусного диалектика, который распоряжается им как актёр, чтобы тронуть противника, через c, а те страсти, которые пробуждаются в душе его жертвы и омрачают в ней ясность мышления через d. Argumentum ad hominem, вводящий в спор личные счёты, и argumentum ad populum, влияющий на аффекты толпы, представляют типичные С. с преобладанием аффективного элемента.

Волевые причины

При обмене мнений мы воздействуем не только на ум и чувства собеседника, но и на его волю. Во всякой аргументации (особенно устной) есть элемент волевой — императивный — элемент внушения. Категоричность тона, не допускающего возражения, определённая мимика и т. п. (e) действуют неотразимым образом на лиц, легко поддающихся внушению, особенно на массы. С другой стороны, пассивность (f) слушателя особенно благоприятствует успешности аргументации противника. Таким образом, всякий С. предполагает взаимоотношение между шестью психическими факторами: a + b + c + d + e + f. Успешность С. определяется величиной этой суммы, в которой a + c + e составляет показатель силы диалектика, b + d + f есть показатель слабости его жертвы. Прекрасный психологический анализ софистики даёт Шопенгауэр в своей «Эристике» (перев. кн. Д. Н. Цертелева). Само собой разумеется, что логические, грамматические и психологические факторы теснейшим образом связаны между собой; поэтому С., представляющий, например, с логической точки зрения quaternio ter.

Способ нахождения ошибки в софизме

  • Внимательно прочитать условие предложенной вам задачи. Начинать поиск ошибки лучше с условия предложенного софизма. В некоторых софизмах абсурдный результат получается из-за противоречивых или неполных данных в условии, неправильного чертежа, ложного первоначального предположения, а далее все рассуждения проводятся верно. Это и вызывает затруднения при поиске ошибки. Все привыкли, что задания, предполагаемые в различной литературе, не содержат ошибок в условии и, поэтому, если получается неверный результат, то ошибку они ищут непременно по ходу решения.
  • Установите области знаний (темы), которые отражены в софизме, предложенных преобразованиях. Софизм может делиться на несколько тем, которые потребуют детального анализа каждой из них.
  • Выясните, соблюдены ли все условия применимости теорем, правил, формул, соблюдена ли логичность. Некоторые софизмы построены на неверном использовании определений, законов, на «забывании» условий применимости. Очень часто в формулировках, правилах запоминаются основные, главные фразы и предложения, всё остальное упускаются. И тогда второй признак равенства треугольников превращается в признак «по стороне и двум углам».
  • Проверяйте результаты преобразования обратным действием.
  • Часто следует разбить работу на небольшие блоки и проконтролировать правильность каждого такого блока.

Примеры софизмов

Проблемы с содержанием статьи Список примеров в этой статье не основывается на авторитетных источниках непосредственно о предмете статьи.

Добавьте ссылки на источники, предметом рассмотрения которых является тема настоящей статьи в целом, и содержащие данные элементы списка как примеры. В противном случае раздел может быть удалён.

Полупустое и полуполное

Полупустое есть то же, что и полуполное. Если равны половины, значит, равны и целые. Следовательно, пустое есть то же, что и полное.

Чётное и нечётное

5 есть 2+3 («два и три»). Два — число чётное, три — нечётное, выходит, что пять — число и чётное и нечётное. Пять не делится на два, также, как и 2+3, значит, оба числа нечётные.

Не знаешь то, что знаешь

— Знаешь ли ты то, о чём я хочу тебя спросить?— Нет.— Знаешь ли ты, что добродетель есть добро?— Знаю.— Об этом я и хотел тебя спросить. А ты, выходит, не знаешь то, что знаешь.

Лекарства

Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит, лекарств нужно принимать как можно больше.

Вор

Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего.

Рогатый

Есть ли у тебя то, что ты не терял? Конечно есть. Ты рога не терял, значит они у тебя есть.

2=3

10-10=0

15-15=0

10-10=15-15

2(5-5)=3(5-5)

2=3

Ошибка в том, что на ноль (5-5) делить нельзя.

Литература

  • Ахманов А. С., Логическое учение Аристотеля, М., 1960;
  • Брутян Г. Паралогизм, софизм и парадокс // Вопросы философии.1959.№ 1.С.56-66.
  • Брадис В. М., Минковский В. Л., Еленев Л. К., Ошибки в математических рассуждениях, 3 изд., М., 1967.
  • Билык А.М., Билык Я.М. К вопросу о проблемной технике софизма (ее связь с современным пониманием научной проблемы) // Философские науки. № 2. 1989. - С.114-117.
  • Морозов Н. А. О научном значении математических софизмов // Известия научного института им. П. Ф. Лесгафта. Пг., 1919.Т.1.С.193-207.
  • Павлюкевич В. В. Логико-методологический статус софизмов // Современная логика:проблемы теории, истории и применения в науке. СПб.,2002. С. 97-98.
  • Read, Stephen (ed).: Sophisms in Medieval Logic and Grammar, Acts of the 8th European Symposium for Medieval Logic and Semantics, Kluwer, 1993
  • Cassagnac, Joachim .: Merde à Celui qui le lira, Flammarion, 1974
  • Тульчинский М. Е. Занимательные задачи-парадоксы и софизмы по физике. М. 1971.
  • Дёмин Р. Н. Собрание «задач» Ричарда Софиста как контекст для «парадоксов» древнекитайской школы имен // Вестник РХГА № 6, СПб., 2005. С. 217—221. http://www.rchgi.spb.ru/Pr/vest_6.htm
  • Неркарарян К. В., Софизмы и парадоксы, 1 издание, 2001

См. также

biograf.academic.ru

Софизмы. Понятие, примеры. Логические парадоксы. Понятие, примеры -Логика

Софизмы. Понятие, примеры

Раскрывая данный вопрос, необходимо сказать, что любой софизм является ошибкой. В логике выделяют также паралогизмы. Отличие этих двух видов ошибок состоит в том, что первая (софизм) допущена умышленно, вторая же (паралогизм) – случайно. Паралогизмами изобилует речь многих людей. Умозаключения, даже, казалось бы, правильно построенные, в конце искажаются, образуя следствие, не соответствующее действительности. Паралогизмы, несмотря на то что допускаются неумышленно, все же часто используются в своих целях. Можно назвать это подгонкой под результат. Не осознавая, что делает ошибку, человек в таком случае выводит следствие, которое соответствует его мнению, и отбрасывает все остальные версии, не рассматривая их. Принятое следствие считается истинным и никак не проверяется. Последующие аргументы также искажаются для того, чтобы больше соответствовать выдвинутому тезису. При этом, как уже было сказано выше, сам человек не сознает, что делает логическую ошибку, считает себя правым (более того, сильнее подкованным в логике).

В отличие от логической ошибки, возникающей непроизвольно и являющейся следствием невысокой логической культуры, софизм является преднамеренным нарушением логических правил. Обычно он тщательно маскируется под истинное суждение.

Допущенные умышленно, софизмы преследуют цель победить в споре любой ценой. Софизм призван сбить оппонента с его линии размышлений, запутать, втянуть в разбор ошибки, которые не относятся к рассматриваемому предмету. С этой точки зрения софизм выступает как неэтичный способ (и при этом заведомо неправильный) ведения дискуссии.

Существует множество софизмов, созданных еще в древности и сохранившихся до сегодняшнего дня. Заключение большей части из них носит курьезный характер. Например, софизм «вор» выглядит так: «Вор не желает приобрести ничего дурного; приобретение хорошего есть дело хорошее; следовательно, вор желает хорошего». Странно звучит и следующее утверждение: «Лекарство, принимаемое больным, есть добро; чем больше делать добра, тем лучше; значит, лекарство нужно принимать в больших дозах». Существуют и другие известные софизмы, например: «Сидящий встал; кто встал, тот стоит; следовательно, сидящий стоит», «Сократ – человек; человек – не то же самое, что Сократ; значит, Сократ – это нечто иное, чем Сократ», «Эти кутята твои, пес, отец их, тоже твой, и мать их, собака, тоже твоя. Значит, эти кутята твои братья и сестры, пес и сука – твои отец и мать, а сам ты собака».

Такие софизмы нередко использовались для того, чтобы ввести оппонента в заблуждение. Без такого оружия в руках, как логика, соперникам софистов в споре было нечего противопоставить, хотя зачастую они и понимали ложность софистических умозаключений. Споры в Древнем мире зачастую заканчивались драками.

При всем отрицательном значении софизмов они имели обратную и гораздо более интересную сторону. Так, именно софизмы стали причиной возникновения первых зачатков логики. Очень часто они ставят в неявной форме проблему доказательства. Именно с софизмов началось осмысление и изучение доказательства и опровержения. Поэтому можно говорить о положительном действии софизмов, т. е. о том, что они непосредственно содействовали возникновению особой науки о правильном, доказательном мышлении.

Известен также целый ряд математических софизмов. Для их получения числовые значения тасуются таким образом, чтобы из двух разных чисел получить одно. Например, утверждение, что 2 х 2 = 5, доказывается следующим образом: по очереди 4 делится на 4, а 5 на 5. Получается результат (1:1) = (1:1). Следовательно, четыре равно пяти. Таким образом, 2 х 2 = 5. Такая ошибка разрешается достаточно легко – нужно лишь произвести вычитание одного из другого, что выявит неравенство двух этих числовых значений. Также опровержение возможно записью через дробь.

Как раньше, так и теперь софизмы используются для обмана. Приведенные выше примеры достаточно просты, легко заметить их ложность и не обладая высокой логической культурой. Однако существуют софизмы завуалированные, замаскированные так, что отличить их от истинных суждений бывает очень проблематично. Это делает их удобным средством обмана в руках подкованных в логическом плане мошенников.

Вот еще несколько примеров софизмов: «Для того чтобы видеть, нет необходимости иметь глаза, так как без правого глаза мы видим, без левого тоже видим; кроме правого и левого, других глаз у нас нет, поэтому ясно, что глаза не являются необходимыми для зрения» и «Что ты не терял, то имеешь; рога ты не терял, значит, у тебя рога». Последний софизм является одним из самых известных и часто приводится в качестве примера.

Можно сказать, что софизмы вызываются недостаточной самокритичностью ума, когда человек хочет понять пока недоступное, не поддающееся на данном уровне развития знание.

Бывает и так, что софизм возникает как защитная реакция при превосходящем противнике, в силу неосведомленности, невежества, когда спорящий не проявляет упорство, не желая сдавать позиций. Можно говорить о том, что софизм мешает ведению спора, однако такую помеху не стоит относить к значительным. При должном умении софизм легко опровергается, хотя при этом и происходит отход от темы рассуждения: приходится говорить о правилах и принципах логики.

Парадокс. Понятие, примеры

Переходя к вопросу о парадоксах, нельзя не сказать о соотношении их с софизмами. Дело в том, что четкой грани, по которой можно понять, с чем приходится иметь дело, иногда нет.

Впрочем, парадоксы рассматриваются со значительно более серьезным подходом, в то время как софизмы играют зачастую роль шутки, не более. Это связано с природой теории и науки: если она содержит парадоксы, значит, имеет место несовершенство основополагающих идей.

Сказанное может означать, что современный подход к софизмам не охватывает всего объема проблемы. Многие парадоксы толкуются как софизмы, хотя не теряют своих первоначальных свойств.

Парадоксом можно назвать рассуждение, которое доказывает не только истинность, но и ложность некоторого суждения, т. е. доказывающее как само суждение, так и его отрицание. Другими словами, парадокс – это два противоположных, несовместимых утверждения, для каждого из которых имеются кажущиеся убедительными аргументы.

Один из первых и, безусловно, образцовых парадоксов был записан Эвбулидом – греческим поэтом и философом, критянином. Парадокс носит название «Лжец». До нас этот парадокс дошел в таком виде: «Эпименид утверждает, что все критяне – лжецы. Если он говорит правду, то он лжет. Лжет ли он или же говорит правду?». Этот парадокс именуется «королем логических парадоксов». Разрешить его до настоящего времени не удалось никому. Суть этого парадокса состоит в том, что когда человек говорит: «Я лгу», он не лжет и не говорит правду, а, точнее, делает одновременно и то и это. Другими словами, если предположить, что человек говорит правду, выходит, что он на самом деле лжет, а если он лжет, значит, раньше он сказал правду об этом. Здесь утверждаются оба противоречащих факта. Само собой, по закону исключенного третьего это невозможно, однако именно поэтому данный парадокс и получил столь высокий «титул».

В развитие теории пространства и времени большой вклад внесли жители города Элея, элеаты. Они опирались на идею о невозможности небытия, которая принадлежит Пармениду. Всякая мысль согласно этой идее есть мысль о существующем. При этом отрицалось любое движение: мировое пространство считалось целостным, мир единым, без частей.

Древнегреческий философ Зенон Элейский известен тем, что составил серию парадоксов о бесконечности – так называемые апории Зенона.

Зенон, ученик Парменида, развивал эти идеи, за что был назван Аристотелем «родоначальником диалектики». Под диалектикой понималось искусство достигать истины в споре, выявляя противоречия в суждении противника и уничтожая их.

Далее представлены непосредственно апории Зенона.

«Ахиллес и черепаха» представляет собой апорию о движении. Как известно, Ахиллес – это древнегреческий герой. Он обладал недюжинными способностями в спорте. Черепаха очень медлительное животное. Однако в апории Ахиллес проигрывает черепахе состязание в беге. Допустим, Ахиллесу нужно пробежать расстояние, равное 1, а бежит он в два раза быстрее черепахи, последней нужно пробежать 1/2. Движение их начинается одновременно. Получается, что, пробежав расстояние 1/2, Ахиллес обнаружит, что черепаха успела за то же время преодолеть отрезок 1/4. Сколько бы ни пытался Ахиллес обогнать черепаху, она будет находиться впереди ровно на 1/2. Поэтому Ахиллесу не суждено догнать черепаху, это движение вечно, его нельзя завершить.

Невозможность завершить эту последовательность заключается в том, что в ней отсутствует последний элемент. Всякий раз, указав очередной член последовательности, мы можем продолжить указанием следующего.

Парадоксальность здесь заключается в том, что бесконечная последовательность следующих друг за другом событий на самом деле все-таки должна завершиться, хотя бы мы и не могли себе представить этого завершения.

Другая апория носит название «дихотомия». Рассуждение построено на тех же принципах, что и предыдущее. Для того чтобы пройти весь путь, необходимо пройти половину пути. В этом случае половина пути становится путем, и чтобы его пройти, необходимо отмерить половину (т. е. уже половину половины). Так продолжается до бесконечности.

Здесь порядок следования по сравнению с предыдущей апорией перевернут, т. е. (1/2)n..., (1/2)3, (1/2)2, (1/2)1. Ряд тут не имеет первой точки, тогда как апория «Ахиллес и черепаха» не имела последней.

Из этой апории делается вывод, что движение не может начаться. Исходя из рассмотренных апорий движение не может закончиться и не может начаться. Значит, его нет.

Опровержение апории «Ахиллес и черепаха».

Как и в апории, в опровержении ее фигурирует Ахиллес, но не одна, а две черепахи. Одна из них находится ближе другой. Движение также начинается одновременно. Ахиллес бежит последним. За то время, как Ахилл пробежит разделяющее их вначале расстояние, ближняя черепаха успеет уползти несколько вперед, что будет продолжаться до бесконечности. Ахиллес будет все ближе и ближе к черепахе, но никогда не сможет ее догнать. Несмотря на явную ложность, логического опровержения такому утверждению нет. Однако если Ахиллес станет догонять дальнюю черепаху, не обращая внимания на ближнюю, он, согласно этой же апории, сумеет вплотную приблизиться к ней. А раз так, то он обгонит ближнюю черепаху.

Это приводит к логическому противоречию.

Для опровержения опровержения, т. е. защиты апории, что само по себе странно, предлагают откинуть груз образных представлений. И выявить формальную суть дела. Здесь следует сказать, что сама апория основывается на образных представлениях и откинуть их – значит опровергнуть и ее. А опровержение достаточно формально. То, что вместо одной в опровержении взято две черепахи, не делает его более образным, нежели апорию. Вообще же сложно говорить о понятиях, не основанных на образных представлениях. Даже такие высшей абстракции философские понятия, как бытие, сознание и другие, понимаются только благодаря образам, соответствующим им. Без образа, стоящего за словом, последнее оставалось бы лишь набором символов и звуков.

Стадий подразумевает существование неделимых отрезков в пространстве и движение в нем объектов. Эта апория основана на предыдущих. Берется один недвижимый ряд объектов и два двигающихся по направлению друг к другу. При этом каждый двигающийся ряд по отношению к недвижимому проходит за единицу времени лишь один отрезок. Однако по отношению к движущемуся – два. Что признается противоречивым. Также говорится, что в промежуточном положении (когда один ряд уже как бы сдвинулся, другой нет) нет места для неподвижного ряда. Промежуточное положение происходит из того, что отрезки неделимы и движение, хотя бы и начатое одновременно, должно пройти промежуточный этап, когда первое значение одного движущегося ряда совпадает со вторым значением второго (движение при условии неделимости отрезков лишено плавности). Состояние же покоя – когда вторые значения всех рядов совпадают. Неподвижный ряд, если предположить одновременность движения рядов, должен в промежуточном положении находиться между движущимися рядами, а это невозможно, так как отрезки неделимы.

02.09.2016, 1819 просмотров.

www.myfilology.ru


Смотрите также