Счет древних людей. Как люди научились считать? Как люди научились считать в уме?
История современного города Афины.
Древние Афины
История современных Афин

Как придумали числа и как считали в древности? Счет древних людей


Как появился счет. Другая история Средневековья. От древности до Возрождения

Как появился счет

Зарождение простейшей хозяйственной деятельности требовало умения какой-то, пусть самой грубой оценки количества предметов. Специальных терминов-числительных в человеческих языках не было. Они создавались по мере необходимости, причем самым простым способом: два – это один и один, три – два и один.

Исследуя современные нам примитивные австралийские племена, обитающие в бухте Купера, ученые обнаружили следующую систему счета: один – гуна, два – баркула, три – баркула-гуна, четыре – баркула-баркула. В языке охотничьего индейского племени абипонов в Аргентине: один – интара, два – иньока, три – иньока-интара; звучание цифры четыре в переводе означает лапу страуса, пять – пальцы руки, десять – пальцы обеих рук, двадцать – пальцы рук и ног.

У народов, стоящих на низших ступенях производственной деятельности, всегда существует много слов, связанных с этой деятельностью. Так, охотники могут иметь огромное количество названий для различных животных, но не сумеют назвать их совокупность, животные. То есть они не могут обобщить существующие понятия в единый комплекс. То же самое и со счетом. Может существовать обозначение единицы, а двойка уже мыслится как много. Вот пример: у индийцев брат – бхай, а братья – бхай-бхай.

Отсутствие развитого счета не препятствовало первичной меновой торговле, ведь она происходила через сравнение обмениваемых предметов наглядно. Их выкладывали в ряды, друг против друга. Например, угри против кореньев, как это и сейчас происходит у аборигенов Австралии.

В праиндоевропейском языке числительное один отсутствовало. Почему? «Собственно счет или исчисление предметов начинается с двух и более, тогда как один предполагает не счет, а называние предмета с помощью его специального обозначения. В дальнейшем такие названия становятся специальными обозначениями числа один и входят в ряд числительных как его начальный элемент. Этим и объясняется разнобой в обозначении числа один в близкородственных диалектах» (Гамкрелидзе, Иванов).

В русском языке до сих пор сохранились «начальные элементы» счета, некие «счетные слова», применяемые наряду с числительными: пять душ детей, три штуки яблок, четыре куска сахара. То же и у китайцев. У них между названием предмета и числительным вставляется тоу, голова (при счете скота), би, рукоятка (для инструментов), жен, корень (для веревок, ниток, ремней, поясов), лин – для дробинок, капель, мелких предметов. То же самое в японском, персидском и других языках.

Потребности практики требовали увеличения количества слов-числительных. Их могло быть пять, или десять, или двадцать, но более двадцати становилось неудобно считать, так как нужно было запоминать все больше и больше специальных названий для абстрактных понятий, цифр. Поэтому с определенного этапа новые числительные образовывались путем повтора уже имеющихся. Так и получилось, что у большинства народов всего десять цифр.

Это показывает, что понятие числа было неотделимо от измерения. Собственно, счет и есть перекладывание предметов, манипуляции с ними. Н. Н. Миклухо-Маклай (1846–1888) описывает способ счета, принятый у жителей Новой Гвинеи: «Папуас загибает один за другим пальцы руки, причем издает определенные звуки, например «бе, бе, бе, бе»… Досчитав до пяти, говорит «ибон-бе» (рука). Затем он загибает пальцы второй руки, снова повторяя «бе, бе»… пока не доходит до «ибон али» (две руки)». Далее он считает по ноге, второй ноге, а если надо, пользуется пальцами рук и ног соплеменников.

Русское пять образовалось от слова пясть, что означает кисть руки на старославянском.

Во многих языках сохранились «следы», отличающие первоначальные цифры от цифр, принятых позже. В русском только числительные 1 и 2 могут иметь мужской (один, два), женский (одна, две) и средний (одно) род. Это и есть наши первые цифры.

До появления цифр или букв, используемых как цифры, люди считали на пальцах или с помощью камней, раковин, зарубок, узлов. Понятие считать – calсulare по-латыни (откуда современные слова калькулировать, калькулятор) – произошло от латинского же слова calculus, камешек.

У короадосов Бразилии счет идет сначала по суставам четырех пальцев левой руки, без учета большого пальца. По три сустава на каждом пальце, всего получается двенадцать. А на правой руке каждый палец считается равным всей левой руке, то есть двенадцати. Итого 12 ? 5=60 – и вот перед вами шестидесятеричная система счисления.

Эта система применялась достаточно широко по всей планете. Десятичная система стала более распространенной, поскольку она удобнее в пользовании. Хотя, например, в России до 1917 года продержалась, а в Англии и сейчас частично используется система с основанием 12. Дюжина, гросс (дюжина дюжин), масса (дюжина гроссов). И кстати, для торговли дюжина удобнее, чем десяток. Дюжину пуговиц можно делить не только на половины, но и на трети, и на четверти, что при десятеричном исчислении невозможно.

Современная позиционная десятичная система с применением так называемых «арабских» цифр (появившихся впервые у испанских арабов) и нуля стала известна в Европе в X–XI веках н. э., а получила повсеместное распространение только в XV–XVI веках. Вот оно, начало «эпохи Возрождения»! Невозможно поверить, но это так: появление НУЛЯ в научном обиходе создало современную научную цивилизацию!

Никакой древнегреческой абаки, счетной доски, не могло быть ранее появления позиционной системы счисления. А если эта система была известна в Древней Греции, то почему от нее отказались?

Позиционная система счисления основана на принципе позиционного, поместного значения цифр, то есть на том, что одна и та же цифра получает различные числовые значения в зависимости от ее места (позиции) в записи, например 222 = 200 + 20 + 2.

До появления позиционный системы процедура счета была ЧРЕЗВЫЧАЙНО трудоемка. Чтобы не запутывать вас многословными доказательствами, предлагаем попробовать сложить ряд непозиционных римских чисел:

СССХХХ + LI + LXXI =?

Получилось? А теперь перемножьте их.

… Единицы измерения длины на первых порах возникли из сопоставления измеряемой длины с частями тела, которыми ее измеряли. Примеры – локоть, стопа, сажень (расстояние между кончиками пальцев рук, вытянутых на ширину плеч), дюйм (по-немецки большой палец), фут (по-английски нога) и так далее.

Сложение и вычитание на протяжении очень долгого времени были единственными доступными математическими действиями. Затем освоили умножение, которое, по сути, было просто удвоением и дальнейшим сложением. Потребность в умножении появилась в связи с необходимостью вычисления площадей. У египтян и вавилонян умножение называлось «а-ша», это же слово означает площадь. Арабы в средневековых математических сочинениях умножение называют «сатх», а это то же самое, что и поверхность (прямоугольника).

В Египте система счета была десятичной, числовые знаки имелись только для единицы (горизонтальная черта, образ мерной палки), десяти (иероглиф, изображающий путы), сотни (измерительная веревка), тысячи (цветок лотоса), десяти тысяч (указательный палец), ста тысяч (головастик), миллиона (удивленный человечек) и десяти миллионов (Солнце; мы здесь даже вспоминать не хотим некоего Марко Поло, который «первым» принес в Европу из средневекового Китая понятие миллиона). Повторяя эти знаки, египтяне выражали все остальные числа. При строительстве пирамид старались вырезать блоки, измеряемые целым числом локтей, чтобы не пользоваться дробями, но в земледелии этого избегать не удавалось. Знали два арифметических действия – сложить (иероглиф: две ноги, идущие налево) и вычесть (две ноги, идущие направо).

Умножали с помощью табличек, путем последовательных удвоений. Например, надо умножить 15 на 13.

1 15

2 30

4 60

8 120

Нужно выбрать множители, сумма которых равна 13. Мы их выделили. Если теперь сложить результаты при выделенных множителях, получится 195. В самом деле, 15?13=195. По той же схеме производили и деление. Например, 195 надо разделить на 15. Пишем табличку удвоений пятнадцати, затем складываем правые числа, чтобы получилось 195. Сумма левых чисел выбранных строчек даст ответ = 13.

Отметим, что такое «древнеегипетское» удвоение и деление пополам, как особые арифметические действия, сохранялись в европейских школьных учебниках еще и в XVII веке.

Понятия 1/2 и 1/4 возникли в практике людей довольно рано, но не как дроби, а как самостоятельные категории половины, четверти. Дроби типа целого числа с половиной образовывались как разность между следующим целым числом и половиной: 21/2 называлась полтретья. Обратите внимание, в русском языке половина и два – слова разного корня. А когда нас спрашивают, который час, мы отвечаем полтретьего.

Так постепенно и неуклонно развивалась математика. Она росла, как цветок, как дерево, как общество, развиваясь и укрупняясь соответственно нуждам людей. Земледельцу для ориентации в своей работе нужны математика и астрономия, астрономии, в свою очередь, нужна более сложная математика. Не позже и не раньше потребного для астрономии времени появился и математический аппарат.

Со временем математика получила возможность быть «самостоятельной». Уже она сама становится законодательницей, предлагая свои решения смежным и дальним дисциплинам: географии, землеустройству, астрономии, становясь важным фактором их развития. Хрестоматийный пример: открытие математическими методами планеты Нептун, путем расчета гравитационных возмущений в движениях других планет Солнечной системы. Математика перестала быть подсобной наукой для астрономов, она сама стала диктовать им, куда направлять телескопы.

Такой путь проходят ВСЕ науки. Чтобы уничтожить знание, нужно уничтожить людей. Если люди продолжают жить, остается знание. Посмотрите: десятилетиями преследовались в нашей стране такие науки, как астрология, хиромантия и прочие «нетрадиционные» учения. Столетиями изводили колдунов. И что же? Как ни включишь телевизор, сплошной «Третий глаз».

Поделитесь на страничке

Следующая глава >

history.wikireading.ru

Как люди научились считать? Как люди научились считать в уме?

На протяжении всей жизни каждый человек всегда чему-то учится, причем полученные знания спустя некоторое время кажутся настолько естественными, что воспринимаются как привычный факт. В голову даже не закрадывается мысль: как все начиналось? Как люди научились считать и определять время? Как давно общество пришло к пониманию того, что в мире практически все подчиняется цифрам?

Как человек научился считать время

Это в современном мире 365 дней в году, 30 дней в месяце и 24 часа в сутках являются естественным фактом. Раньше, когда не было знаний о количестве времени, человек довольствовался способами, придуманными самостоятельно, и средством для этого являлось Солнце. На какую-либо поверхность устанавливался циферблат с отметками и шест, тень от которого перемещалась по окружности. Зависимость от погодных условий являлась существенным недостатком такого устройства: пасмурное небо и дожди не давали возможности определения времени. Аналогом такой конструкции в современном мире являются часы, прочно завоевавшие свою нишу и ставшие незаменимым предметом в жизни человека.

как человек научился считать время

Определение времени по звездам, воде и огню

Звезды – символ романтики и мечтаний о чем-то далеком и прекрасном, служили также своего рода определителем времени в ночной период. Для этого были изобретены карты звездного неба, измерение по которым происходило при помощи пассажного инструмента.

Помимо звездных и солнечных часов, популярных практически у всех народов и отличавшихся лишь конструкцией, довольно массово использовались водные экспонаты, представляющие собой емкость цилиндрической формы, из которого по каплям стекала вода. Именно по количеству стекшей воды люди отмеряли время. Такие часы были популярны в Египте, Риме, Вавилоне. А как человек научился считать время в странах Азии? Здесь в устройствах водного типа использовался обратный принцип: плавающий сосуд заполнялся водой, поступающей через маленькое отверстие.

Пытаясь привнести в свою жизнь не только водную, но и огненную стихию, человек также придумал огненные часы, взявшие свое начало в Китае и завоевавшие со временем популярность во всей Европе. Основой этих устройств, определяющих время, являлся горючий материал (в виде палочки или спирали) и прикрепленные к нему металлические шарики, падающие при сгорании определенной доли материала. В Европе в основном использовали свечные часы, предпочитая их лампадным и фитильным. Время по ним определялось количеством сгоревшего воска. Особенно распространены такие часы были в церквях и монастырях.

Песочные часы – раритетная гордость современности

как люди научились считать

Конечно же, самыми популярными были песочные часы, которые и в настоящее время активно используются для выполнения основной своей функции, а также в качестве предмета декора. Точность исчисляемого времени в устройствах такого типа зависит от качества песка, определяющего равномерность его сыпучести.

История возникновения счетной науки

Понимание времени в его количественном показателе являлось определяющим фактором для познания цифр и умения считать. Причем история возникновения счета настолько давняя, что больше похожа на сказку. Как люди научились считать? Много веков назад человечество жило племенами, вело стадный образ жизни, одевалось в шкуры убитых животных и питалось тем, что его представители могли сами добыть.как люди научились считать откуда взялись цифры и числа

Соответственно, и подручными инструментами для выживания и добычи пищи являлись простейшие орудия: палки и камни. Возможно, постоянные опасности и потребность в добыче пищи стали основным толчком к необходимости счета, который в наше время не только воспринимается как естественный факт, но и облегчается при помощи современной вычислительной техники.

Один, два и много

Первыми понятиями, обозначающими количество и разъясняющими, как люди научились считать, были «один» и «много». «Один» – отдельно выделяемый по определенным критериям предмет или особь: вожак стаи, зерно в колосе и т.п. «Много» - общая масса, в которой этот предмет находится.

Появление числа «два», обозначающего «пару»: глаз, ушей, лап, крыльев, рук, объясняет, как человек научился считать во времена несуществующих цифр. Рассказывая о двух добытых утках, охотник показывал на свои глаза, поясняя таким образом количество трофея.

В счетной науке древнего мира наблюдался постепенный прогресс: были уже известны числа «один», «два» и «много». Вскоре человек пришел к тому, что стал из общей массы выделять три, четыре, пять и более предметов, причем данное количество не имело названия, а объяснялось, как сумма известных на тот момент чисел: «2» и «1». Например: «3»- это «1» и «2» в сумме; «4» - сумма «2» и «2»; а «5» - «2», «2» и «1» вместе взятые. В Тибете число «2» -это крылья, в Индии – глаза, у некоторых народов «1» - это луна, «5» - рука. То есть каждое число имело сначала визуально-ассоциативное восприятие, прежде чем получало название.

Счет как жизненно важная необходимость

Как люди научились считать, если умение этому «искусству» на каждом этапе развития человечества становилось просто необходимостью? В процессе охоты при окружении зверя старшему охотнику требовалось правильно расставить людей, чтобы взять животное в кольцо. Для этого он на пальцах показывал, в каком месте и скольким людям требуется занять нужные позиции..как научиться считать в уме

В торговле для обозначения цены также применялась математика пальцев рук (и ног, если стоимость была высокая). К примеру, при обмене сделанного копья на шкурки животных, продавец клал руку на землю и показывал, что напротив каждого пальца требуется положить шкурку. К слову, загибание пальцев обозначало сложение, а их разгибание – вычитание. Это были первые математические примеры, объясняющие, как древние люди научились считать в далеком прошлом.

Счетная наука в разных странах

Многие страны, сохранившие в своей истории модели того, как люди научились считать, до сих пор используют наследие прошлого: в Японии и Китае предметы домашнего пользования считают пятерками и десятками; в Англии и Франции - двадцатками.

Как люди научились считать? Откуда взялись цифры и числа? Первыми способами записи чисел являлись зарубки на деревьях и завязывание узлов на веревках.

Древние египтяне, изображавшие любое действие в виде картинки на папирусе, как таковых чисел не записывали. Жители Древнего Рима числа обозначали черточками. Так «I» - это один, «V» - изображение кисти с оттопыренным в сторону пальцем, вернее пяти пальцев в упрощенном варианте, «Х» - две пятерни, сложенные вместе.

как человек научился считать

С появлением букв для обозначения чисел стали использовать алфавит. К примеру: В-

С появлением букв для обозначения чисел стали использовать алфавит. К примеру: В - это «2», Г – «3», Д – «4», Е – «5». Для отличия букв и цифр над последними ставился значок, именуемый «титло». Способ был не очень удобный, так как не позволял записывать большие числа. Со временем люди стали отделять числа от букв и воспринимать отдельно, независимо от предметов.

Современные арабские цифры, которые широко применяются сегодня повсеместно, были изобретены в Индии, а в нашей стране нашли свое применение в 18 веке. Не утратили популярность и римские числа, по сегодняшний день встречающиеся на циферблатах часов, и используемые для обозначения столетий и глав в книгах.

Отличился способом счета Древний Вавилон, в котором за 6 тысяч лет до нашей эры уже велся математический учет хозяйственных операций. Записи такого рода изображались картинками (иероглифами) в виде узких горизонтальных и вертикальных клинышков, откуда и пошло название «клинопись».

как люди научились считать и писать

Единица обозначалась одним клинышком, двойка - двумя и так далее. Число «10» выделялось широким клином и имело особенное название. Свой расцвет математика Вавилона пережила во времена правления царя Хаммурапи. В письменных источниках того временного периода обнаружены доказательства того, как люди научились писать и считать задолго до наших времен. Это записи сложных вычислительных действий, а также решения квадратных и кубических уравнений.

Как научиться считать в уме

Если такие сложные действия были под силу нашим предкам, то для современного поколения математический счет, усовершенствованный временем и множеством великих умов, не должен составлять особой сложности. Правда, наличие вычислительной техники, способной произвести цифровые действия вместо человека, значительно облегчает умственную работу последнего. Поэтому устным счетом, помогающим развивать память и тренировать навыки, должен владеть каждый. Обучение такому виду умственной деятельности будет успешным, если присутствуют:

  • способности, которые совместно с умственной концентрацией помогают сосредоточить внимание на поставленной задаче и удержать в памяти сложные числа;
  • знание формул, обуславливающих легкость производимых вычислительных действий;
  • практика, которая наряду с постоянными тренировками позволяет развивать и совершенствовать навыки.

Примеры несложного умственного счета

Складывать, вычитать, умножать и делить цифры, не делая никаких записей на бумаге и не пользуясь калькуляторов, совсем несложно. Вот несколько примеров того, как научиться считать в уме без особых затруднений:

Умножение на 4

Легкий способ, при котором число нужно умножить на 2, а полученный результат еще раз удвоить. Например:

35 * 4 = 35* 2 = 70 * 2 = 140как люди научились писать и считать

Умножение на 11

Цифры двузначного числа, умножаемого на 11, требуется как бы раздвинуть.

Например:

48 * 11 = 4 и 8 * 11

Потом требуется сложить цифры числа, в данном случае 4 и 8 и полученный результат будет ответом. Важно запомнить, что если при суммировании результатом будет двухзначное число, то оставить нужно только единицы, а к десяткам прибавить 1.

4 (12) 8 = 5 2 8 = 528. То есть из полученного результата 12 оставили единицы – это 2, а к десятку прибавили 1.

Деление на 5

Чтобы данное действие не вызывало сложностей, требуется число увеличить в два раза и переместить запятую на одну цифру назад.

К примеру:

125/5 = 125*2 = 250 (смещение запятой) = 25

Деление на 50

В данном случае закономерность аналогична: число умножается на 2 и делится на 100.

600/50 = 600 * 2 / 100 = 12

Деление на 25

Число умножается на 4 и делится на 100.

700/ 25 = 700*4 / 100 = 28

Сложение и вычитание натуральных чисел

При сложении натуральных чисел следует знать такую хитрость, что если одно из слагаемых увеличить на некое число (для облегчения счета), то это же число нужно отнять от результата.

К примеру:

787 + 193 = (787 + 193+ 7 (для округления 193 до 200)) – 7 = (787 + 200) – 7 = 980

fb.ru

§ 1. Как ведется счет лет в истории

§ 1. Как ведется счет лет в истории

Как начался современный отсчет времени

В древности не было единого для всех календаря. 2 тысячи лет назад произошло событие, от которого люди во многих странах мира начали вести свой календарь. Этим событием стало рождение человека по имени Иисус Христос.

Солнечный календарь древних жителей Америки

Основанная им религия – христианство – со временем распространилась по всему миру. В тех странах, где христиане составляли большинство, Рождество Иисуса начали отмечать как великий праздник. Старые календари в этих странах были отменены, а новый отсчет начали вести от даты рождения Христа. Время, прошедшее от года рождения Иисуса Христа до наших дней, люди стали называть нашей (новой) эрой, сокращенно – н. э. Наша эра длится уже более 2 тысяч лет.

Счет лет до новой эры

О чем-либо, случившемся до Рождества Иисуса Христа, мы условно говорим, что это произошло до нашей (новой) эры, сокращенно – до н. э. Как быть, если мы хотим узнать, сколько лет прошло от события, происшедшего до Рождества Христова, по настоящее время? Чтобы узнать это, надо к дате, когда оно произошло, прибавить дату, которая сейчас значится по нашему календарю.

Например, как узнать, сколько времени прошло с возникновения письменности, если известно, что она появилась в III тысячелетии до н. э.? Надо к этой дате прибавить еще 2 тысячелетия. Получается, что письменность возникла примерно 5 тысяч лет назад.

Одна из первых в истории надписей, сделанная в Древней Индии

Ну а как, скажем, узнать, в каком тысячелетии до н. э. люди научились обрабатывать железо, если мы знаем, что это произошло приблизительно 3 тысячи лет назад? Для этого от трех тысяч лет надо отнять две тысячи. Получается, что это произошло в первом тысячелетии до н. э.

Подведем итоги

В настоящее время в большинстве стран мира счет лет ведется от Рождества Иисуса Христа.

«Время – вечный образ, движущийся от числа к числу».

Древний мудрец Платон

Вопросы и задания

1. Когда начался современный отсчет лет в истории?

2. Что и на сколько произошло раньше: появление письменности или начало обработки железа?

Поделитесь на страничке

Следующая глава >

history.wikireading.ru

Как придумали числа и как считали в древности?

Стр 1 из 2Следующая ⇒

Введение

Изучение почти любого предмета в школе предполагает хорошие знания математики, и без нее нельзя освоить эти предметы.

Может показаться, что на уроках истории, рисования, физкультуры и труда математика не нужна. Но это неверно. И на этих уроках мы встречаемся с разного рода вычислениями и измерениями, слышим названия единиц измерения и не всегда понимаем, о чем говорит преподаватель.

 

Как придумали числа и как считали в древности?

Представьте, ведь давным-давно во времена, когда у людей не было цифр и они не умели считать как мы сейчас, у них все-равно возникало огромное количество поводов для счета. Правда, в те времена им не нужно было применять огромные числа. И самый простой вариант счета подсказала природа.

Люди использовали пальцы рук, а при больших числах и ног, чтобы посчитать, например, количество голов скота в стаде. Если уж своих пальцев не хватало, звали приятеля, чтобы уже считать на его руках и ногах. Достаточно неудобно было, а вдруг никого рядом не окажется, когда срочно нужно посчитать большое количество чего-нибудь?

 

Потом кто-то придумал делать глиняные кружочки для подсчета. Например, повел пастух с утра большое стадо на пастбище. Подсчитал всех животных с помощью кружков — сколько кружков, столько животных. Вечером привел их домой, опять смотрит, чтобы каждому животному соответствовал один кружок. Ну и подобных вариантов существовало множество, то есть пользовались подручными средствами.

Первое доказательство использования древними людьми счета — это волчья кость, на которой 30 тысяч лет назад сделали зарубки. Притом они набиты не как-нибудь, а сгруппированы по пять.

В Древности у разных народов существовали свои способы счета. Например, майа использовали только три обозначения: точку, линию и эллипс и записывали ими любые цифры.

В Древнем Египте около 5000-4000 лет до н.э. использовали такую запись чисел: единица обозначалась палочкой, сотня — пальмовым листом, а сто тысяч — лягушкой (в дельте Нила было очень много лягушек, вот у людей и возникла такая ассоциация: сто тысяч — очень много, как лягушек в Ниле).

А вот наши предки-славяне использовали самую сложную запись чисел. Они их записывали буквами, над которыми ставили специальный значок «титло», чтобы отличить, где написали буквы, а где цифры, и значков у них было 27.

А, например, папуасские племена имели только две цифры, один и два, и называли их «урапун» и «окоза» соответственно. А дальнейшие числа называли просто используя эти два. Например три у них — «окоза-урапун», а четыре — «окоза-окоза». Видимо, считать им особо нечего, поэтому больших чисел у них нет. А все, что больше шести-семи они называют «много». А сколько там «много» уже неизвестно!

Клинопись.

Но человечество развивалось, хозяйство увеличивалось, усложнялись и подсчеты. Появилась потребность в записи чисел. Ведь на память невозможно упомнить, сколько в стаде голов скота, сколько мешков пшеницы у тебя лежит, а сколько потратили, сколько посадили и какой собрали урожай. И вот примерно в V веке до нашей эры появились первые цифры.

 

 

 

Говорят, что первые числа изобрели шумеры, народ, живший на территории Южного Междуречья Тигра и Евфрата, современного Ирака примерно в IV-III тысячелетии до н.э. Шумеры, кстати, очень интересный народ. Огромное количество изобретений, известных сейчас, были впервые использованы ими. Например, постельное белье, обожженный кирпич, колесо.

Шумеры изобрели и так называемое клинописное письмо или клинопись. На глиняных табличках рисовались различные символы в виде клиньев. Цивилизация шумеров была очень развита для тех времен. В их города жили торговцы, ремесленники. Для счета применялись сначала глиняные фишки различной формы. Со временем на них стали делать пометки, которые обозначали количество и вид того, что считали.

Например, две козы. Но два мешка писали совершенно по-другому. То есть они описывали количество конкретных объектов и не выделяли отдельно цифру.

Клинописное письмо

После шумеров на этих землях обосновались вавилоняне. Они переняли систему счисления шумеров. Египтяне тоже пользовались похожей системой счета.

Но все-таки подобный способ записи чисел не идеален и с развитием человечества развивалась и запись чисел.

 

 

mykonspekts.ru


Смотрите также