Математика в Древнем Египте. Цифры древнего египта
Математика в Древнем Египте — Википедия РУ
Данная статья — часть обзора История математики.
Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э.
Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве зданий, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому наши знания о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов — известно[1], что греческие математики учились у египтян[2].
Нам ничего не известно о развитии математических знаний в Египте как в более древние, так и в более поздние времена. После воцарения Птолемеев начинается чрезвычайно плодотворный синтез египетской и греческой культур.
Источники
Часть папируса Ахмеса.Задачи с 49 по 55.
Основные сохранившиеся источники относятся к периоду Среднего царства, времени расцвета древнеегипетской культуры:
Папирус Ахмеса или папирус Ринда — наиболее объёмный манускрипт, содержащий 84 математические задачи. Написан около 1650 г. до н. э.
Московский математический папирус (25 задач), около 1850 г. до н. э., 544 × 8 см.
Так называемый «кожаный свиток» (англ.), 25 × 43 см.
Папирусы из Лахуна (Кахуна) (англ.), содержащие ряд фрагментов на математические темы.
Берлинский папирус (англ.), около 1300 года до н. э.
Каирские деревянные таблички (таблички Ахмима).
Папирус Рейснера (англ.), примерно XIX век до н. э.
От Нового царства до нас дошли несколько фрагментов вычислительного характера.
Авторы всех этих текстов нам неизвестны. Дошедшие до нас экземпляры — это в основном копии, переписанные в период гиксосов. Носители научных знаний тогда именовались писцами и фактически были государственными или храмовыми чиновниками.
Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями, пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического, арифметические прогрессии, решение уравнений первой и второй степени с одним неизвестным[3].
Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления.
Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём индуктивных обобщений и гениальных догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что математика в Древнем Египте тех лет имела или, по крайней мере, начинала приобретать теоретический характер. Так, египетские математики умели извлекать корни (целочисленные) и возводить в степень[4], решать уравнения, были знакомы с арифметической и геометрической прогрессией и даже владели зачатками алгебры: при решении уравнений специальный иероглиф «куча» обозначал неизвестное.
Нумерация (запись чисел)
Иероглифическая запись числа 35736
Древнеегипетская нумерация, то есть запись чисел, была похожа на римскую: поначалу были отдельные значки для 1, 10, 100, … 10 000 000, сочетавшиеся аддитивно (складываясь). Египтяне писали справа налево, и младшие разряды числа записывались первыми, так что в конечном счёте порядок цифр соответствовал нашему. В иератическом письме уже есть отдельные обозначения для цифр 1-9 и сокращённые значки для разных десятков, сотен и тысяч.
Любое число в Древнем Египте можно было записать двумя способами: словами и цифрами. Например, чтобы написать число 30, можно было использовать обычные иероглифы:
или то же самое написать цифрами (три символа десятки):
Плита с гробницы принцессы Неферетиабет (2590—2565 до н. э., Гиза). Лувр
Умножение египтяне производили с помощью сочетания удвоений и сложений. Деление заключалось в подборе делителя, то есть как действие, обратное умножению.
Особые значки обозначали дроби вида 1n{\displaystyle {\frac {1}{n}}} и 23{\displaystyle {\frac {2}{3}}} . Однако общего понятия дроби mn{\displaystyle {\frac {m}{n}}} у них не было, и все неканонические дроби представлялись как сумма аликвотных дробей. Типовые разложения были сведены в громоздкие таблицы.
Пример записи дробей из Папируса Ринда[5]
5 + 1⁄2 + 1⁄7 + 1⁄14 (= 5 5⁄7)
Арифметика
Знаки сложения и вычитания
Чтобы показать знаки сложения или вычитания использовался иероглиф
или
Если направление ног у этого иероглифа совпадало с направлением письма, тогда он означал «сложение», в других случаях он означал «вычитание».[6]
Сложение
Если при сложении получается число большее десяти, тогда десяток записывается повышающим иероглифом.
Например: 2343 + 1671
+
Собираем все однотипные иероглифы вместе и получаем:
Преобразуем:
Окончательный результат выглядит вот так:
Умножение
Основная статья: Умножение в Древнем Египте
Древнеегипетское умножение является последовательным методом умножения двух чисел. Чтобы умножать числа, им не нужно было знать таблицы умножения, а достаточно было только уметь раскладывать числа на кратные основания, умножать эти кратные числа и складывать.
Египетский метод предполагает раскладывание наименьшего из двух множителей на кратные числа и последующее их последовательное переумножение на второй множитель
Этот метод можно и сегодня встретить в очень отдаленных регионах.
Разложение
Египтяне использовали систему разложения наименьшего множителя на кратные числа, сумма которых составляла бы исходное число.
Чтобы правильно подобрать кратное число, нужно было знать следующую таблицу значений:
1 x 2 = 22 x 2 = 44 x 2 = 88 x 2 = 1616 x 2 = 32
Пример разложения числа 25:
Кратный множитель для числа «25» — это 16.
25 — 16 = 9,
Кратный множитель для числа «9» — это 8,
9 — 8 = 1,
Кратный множитель для числа «1» — это 1,
1 — 1 = 0
Таким образом «25» — это сумма трех слагаемых: 16, 8 и 1.
Пример: умножим «13» на «238»:
✔
1 х 238
= 238
✔
4 х 238
= 952
✔
8 х 238
= 1904
13 х 238
= 3094
Известно, что 13 = 8 + 4 + 1. Каждое из этих слагаемых нужно умножить на 238. Получаем: 13 × 238 = (8 + 4 + 1) × 238 = 8 x 238 + 4 × 238 + 1 × 238 = 3094.
Уравнения
Иероглифическая запись уравнения x(23+12+17+1)=37{\displaystyle x\left({\frac {2}{3}}+{\frac {1}{2}}+{\frac {1}{7}}+1\right)=37}
Пример задачи из папируса Ахмеса:
Найти число, если известно, что от прибавления к нему 2/3 его и вычитания из результата его трети получается 10.
Геометрия
Вычисление площадей
В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника и трапеции. Площадь произвольного четырёхугольника со сторонами a, b, c, d вычислялась приближённо как S=a+c2⋅b+d2{\displaystyle S={\frac {a+c}{2}}\cdot {\frac {b+d}{2}}} ; эта грубая формула даёт приемлемую точность, если фигура близка к прямоугольнику.
Египтяне предполагали, что площадь круга S диаметром d равна площади квадрата, сторона которого составляет 8/9 диаметра: S=(d−d9)2=(89d)2.{\displaystyle S=\left(d-{\frac {d}{9}}\right)^{2}=\left({\frac {8}{9}}d\right)^{2}.} Это правило соответствует приближению π≈4⋅(89)2{\displaystyle \pi \approx 4\cdot \left({\frac {8}{9}}\right)^{2}} ≈ 3,1605 (погрешность менее 1 %)[7]..
Некоторые исследователи[8] на основании 10-й задачи Московского математического папируса считали, что египтяне знали точную формулу для вычисления площади сферы, однако другие учёные с этим не согласны[9][10].
Вычисление объёмов
Реконструкция водяных часов по чертежам из Оксиринха
Египтяне могли высчитывать объёмы параллелепипеда, цилиндра, конуса и пирамид. Для вычисление объёма усечённой пирамиды египтяне пользовались следующим правилом: пусть мы имеем правильную усечённую пирамиду со стороной нижнего основания a, верхнего b и высотой h; тогда объём вычислялся по следующей (правильной) формуле: V=(a2+ab+b2)⋅h4.{\displaystyle V=(a^{2}+ab+b^{2})\cdot {\frac {h}{3}}.}
Древний свиток папируса, найденный в Оксиринхе, свидетельствует, что египтяне могли вычислять также объём усечённого конуса. Эти знания ими использовались для сооружения водяных часов. Так, например, известно, что при Аменхотепе III были построены водяные часы в Карнаке[источник не указан 1117 дней].
Египетский треугольник
Египетским треугольником называется прямоугольный треугольник с соотношением сторон 3:4:5. Плутарх в первом веке об этом треугольнике в сочинении «Об Исиде и Осирисе» писал: «видимо, египтяне сравнивают природу Всеобщности с красивейшим из треугольников». Возможно, именно из-за этого этот треугольник получил название египетского[11]. Действительно, греческие учёные сообщали, что в Египте для построения прямого угла использовалась верёвка, разделённая на 12 частей.
Египетский треугольник активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид. Историк Ван дер Варден попытался поставить этот факт под сомнение, однако более поздние исследования его подтвердили[12]. В любом случае, нет никаких свидетельств, что в Древнем Египте была известна теорема Пифагора в общем случае (в отличие от Древнего Вавилона)[13].
См. также
Примечания
↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. Указ. соч., стр. 125: «Фалес путешествовал в Египет и привёз геометрию в Элладу» (из комментария Прокла к Евклиду).
↑ «Согласно большинству мнений, геометрия была впервые открыта в Египте, и возникла при измерении площадей» // Proclus Diadochus. In primum Euclidis Elementorum commentarii. — Leipzig, 1873. — С. 64.
↑ История математики, том I, 1970, с. 21—33..
↑ История математики, том I, 1970, с. 24..
↑ Gardiner Alan H. Egyptian grammar: being an introduction to the study of hieroglyphs 3rd ed., rev. London: 1957, p. 197.
↑ Cajori, Florian. A History of Mathematical Notations. — Dover Publications, 1993. — P. pp. 229–230. — ISBN 0486677664.
↑ История математики, том I, 1970, с. 30—32..
↑ W. W. Struve. Mathematischer Papyrus des Museum in Moskau. — Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Abteilung A. — Berlin: Springer, 1930. — С. 157.
↑ История математики, том I, 1970, с. 31—32..
↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции, стр. 44-45
↑ Прасолов В. В. Глава 1. Древний Египет и Вавилон // История математики. — (не публиковалась), 2013. — С. 5.
↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. М.: Физматлит, 1959, С. 13, подстрочное примечание
↑ История математики, том I, 1970, с. 31..
Литература
Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — 456 с.
Веселовский И. Н. Египетская наука и Греция. Труды ИИЕ, 2, 1948, с. 426—498.
Выгодский М. Я. Арифметика и алгебра в древнем мире. — М.: Наука, 1967.
Депман И. Я. История арифметики. Пособие для учителей. — Изд. второе. — М.: Просвещение, 1965. — 416 с.
История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
Нейгебауер О. Лекции по истории античных математических наук. — Москва-Ленинград, 1937.
Раик А. Е. Две лекции о египетской и вавилонской математике // Историко-математические исследования. — М.: Физматгиз, 1959. — № 12. — С. 271-320.
Раик А. Е. Очерки по истории математики в древности. Саранск: Мордовское гос. изд-во, 1977.
Gillings R. J. Mathematics in the time of the pharaohs. Cambridge: MIT Press, 1972.
Rossi C. Architecture and mathematics in Ancient Egypt. Cambridge (UK): Cambridge UP, 2004.
Vogel K. Vorgriechische Mathematik I, Vorgeschichte und Ägypten. Hannover: Schrödel, 1958.
Ссылки
http-wikipediya.ru
Египетская система счисления
Египетская система счисления — непозиционная система счисления, которая употреблялась в Древнем Египте вплоть до начала X века н.э. В этой системе цифрами являлись иероглифические символы; они обозначали числа 1, 10, 100 и т. д. до миллиона.
В далекие времена в Египте, опередившем в своем развитии многие страны, числа писались на папирусе. Там задолго до нашего летосчисления сообразили, что значков станет меньше, если придавать им разную форму. В ней ключевые числа 1, 10,100 и т.д. - изображались специальными значками ероглифами.
Числа, не кратные 10, записывались путем повторения этих цифр. Каждая цифра могла повторяться от 1 до 9 раз.Фиксированного направления записи чисел не существовало: они могли записываться справа налево или слева направо и даже вертикально.
В результате упрощений и стилизаций от иероглифов позднее произошли условные знаки, облегчающие письмо от руки. Они легли в основу так называемого иератического письма (от греч. "иератикос" - "священный"). Эту систему записи чисел можно обнаружить в более поздних египетских папирусах. Сохранились два математических папируса, позволяющих судить о том, как считали древние египтяне. Один из них - папирус Райна хранится в Британском музее в Лондоне, а другой названный Московским - в музее изобразительных искусств им. А.С. Пушкина в Москве. Оказывается умножение и деление, древние египтяне производили путем последовательного удвоения чисел. Пусть, например надо умножить 19 на 37. Египтяне последовательно удваивали число 37, причем в правом столбце записывали результаты удвоения, а в левом соответствующие степени двойки:
Удвоение продолжалось до тех пор, пока не оказывалось, что из чисел левого столбца можно составить множитель (в нашем примере 19=1+2+16). Египтяне отмечали соответствующие строки вертикальными черточками и складывали те числа, которые стоят в этих же строках справа. В данном случае надо сложить 37+74+592=703. Так получали произведение. Если теперь число 703 нужно было разделить на 19, то египтяне начинали последовательно удваивать делитель и продолжал и это до тех пор, пока числа правого столбца, оставались меньше 703. Затем из чисел правого столбца они пытались составить делимое, и тогда сумма чисел в левом столбце давала частное:
В данном случае 703=608+76+19, то есть частное будет 1+4+32=37. Если бы делимое не делилось без остатка на делитель, то его не удалось бы составить из чисел правого столбца. Получились бы и частное и остаток.
sites.google.com
Математика в Древнем Египте: знаки, цифры, примеры
Зарождение математических знаний у древних египтян связано с развитием хозяйственных потребностей. Без математических навыков древнеегипетские писцы не могли бы обеспечивать проведение землемерных работ, рассчитывать количество рабочих и их содержание или производить раскладку налоговых отчислений. Так что появление математики можно приурочить к эпохе возникновения самых ранних государственных образований на территории Египта.
Египетские числовые обозначения
Десятичная система счета в Древнем Египте сложилась на основе использования для подсчета предметов количества пальцев на обеих руках. Числа от одного до девяти обозначались соответствующим количеством черточек, для десятков, сотен, тысяч и так далее существовали особые иероглифические знаки.
Вероятнее всего, цифровые египетские символы возникли как результат созвучия того или иного числительного и названия какого-либо предмета, ведь в эпоху становления письменности знаки-пиктограммы имели строго предметное значение. Так, например, сотни обозначались иероглифом, изображающим веревку, десятки тысяч – изображением пальца.
В эпоху Среднего царства (начало II тысячелетия до н. э.) появляется более упрощенная, удобная для письма на папирусе иератическая форма письменности, соответствующим образом меняется и написание цифровых знаков. Знаменитые математические папирусы написаны иератическим письмом. Иероглифика применялась в основном для настенных надписей.
Система древнеегипетской нумерации не менялась на протяжении тысяч лет. Позиционного способа записи чисел древние египтяне не знали, поскольку не подошли еще к понятию нуля не только как самостоятельной величины, но и просто как отсутствия количества в определенном разряде (этой начальной ступени достигла математика в Вавилоне).
Дроби в математике Древнего Египта
Египтяне имели понятие о дробях и умели производить некоторые операции с дробными числами. Египетские дроби представляют собой числа вида 1/n (так называемые аликвотные дроби), поскольку дробь представлялась египтянами как одна часть чего-либо. Исключением являются дроби 2/3 и 3/4. Неотъемлемым элементом записи дробного числа был иероглиф, переводимый обычно как «один из (некоторого количества)». Для наиболее употребительных дробей существовали особые знаки.
Дробь, числитель которой отличен от единицы, египетский писец понимал буквально, как несколько частей какого-либо числа, и буквально же записывал. Например, дважды подряд 1/5, если требовалось изобразить число 2/5. Так что египетская система дробей была весьма громоздка.
Интересно, что один из священных символов египтян – так называемое «око Хора» – также имеет математический смысл. Один из вариантов мифа о схватке между божеством ярости и разрушения Сетом и его племянником солнечным богом Хором гласит, что Сет выбил Хору левый глаз и разорвал или растоптал его. Боги восстановили глаз, но не полностью. Око Хора олицетворяло разные аспекты божественного порядка в мироустройстве, такие как идея плодородия или власть фараона.
Изображение ока, почитавшегося как амулет, содержит элементы, обозначающие особый ряд чисел. Это дроби, каждая из которых вдвое меньше предыдущей: 1/2, 1/4, 1/8, 1/16, 1/32 и 1/64. Символ божественного глаза, таким образом, представляет их сумму – 63/64. Некоторые историки-математики полагают, что в этом символе отражено понятие египтян о геометрической прогрессии. Составные части изображения ока Хора использовались в практических расчетах, например при измерении объема сыпучих веществ, таких как зерно.
Принципы арифметических действий
Метод, которым пользовались египтяне при выполнении простейших арифметических операций, состоял в подсчете итогового количества символов, обозначающих разряды чисел. Единицы складывались с единицами, десятки с десятками и так далее, после чего производилась окончательная запись результата. Если при суммировании получалось более десяти знаков в каком-либо разряде, «лишний» десяток переходил в высший разряд и записывался соответствующим иероглифом. Вычитание производилось таким же способом.
Без применения таблицы умножения, которой египтяне не знали, процесс вычисления произведения двух чисел, особенно многозначных, был чрезвычайно громоздким. Как правило, египтяне пользовались методом последовательного удвоения. Один из множителей раскладывался на сумму чисел, которые мы сегодня назвали бы степенями двух. Для египтянина это означало количество последовательных удвоений второго множителя и итоговое суммирование результатов. Например, умножая 53 на 46, египетский писец разложил бы 46 на сумму 32 + 8 + 4 + 2 и составил бы табличку, которую вы можете видеть ниже.
* 1
53
* 2
106
* 4
212
* 8
424
* 16
848
* 32
1696
Суммируя результаты в отмеченных строках, он получил бы 2438 – столько же, сколько и мы сегодня, но иным способом. Интересно, что такой двоичный метод умножения применяется в наше время в вычислительной технике.
Иногда, помимо удвоения, число могли умножать на десять (поскольку использовалась десятичная система) или на пять, как на половину десятки. Вот еще один пример на умножение с записью египетскими символами (косой черточкой помечались складываемые результаты).
Операция деления производилась также по принципу удвоения делителя. Искомое число при умножении на делитель должно было дать указанное в условии задачи делимое.
Математические знания и навыки египтян
Известно, что египтяне знали возведение в степень, а также применяли обратную операцию – извлечение квадратного корня. Кроме того, они имели представление о прогрессии и решали задачи, сводящиеся к уравнениям. Правда, уравнения как таковые не составлялись, так как еще не сложилось понимание того, что математические отношения между величинами носят универсальный характер. Задачи группировались по тематике: размежевание земель, распределение продуктов и так далее.
В условиях задач присутствует неизвестная величина, которую требуется найти. Она обозначается иероглифом «множество», «куча» и является аналогом величины «икс» в современной алгебре. Условия часто излагаются в форме, которая, казалось бы, просто требует составления и решения простейшего алгебраического уравнения, например: «куча» складывается с 1/4, также содержащей «кучу», и получается 15. Но египтянин не решал уравнение x + x/4 = 15, а подбирал искомую величину, которая удовлетворяла бы условиям.
Значительных успехов математика Древнего Египта достигла в решении геометрических задач, связанных с потребностями строительства и землемерных работ. О круге задач, которые стояли перед писцами, и о способах их решения мы знаем благодаря тому, что сохранилось несколько письменных памятников на папирусе, содержащих примеры вычислений.
Древнеегипетский задачник
Один из наиболее полных источников по истории математики в Египте – так называемый математический папирус Ринда (по имени первого владельца). Он хранится в Британском музее в виде двух частей. Небольшие фрагменты также есть в музее Нью-Йоркского исторического общества. Его также называют папирусом Ахмеса – по имени писца, переписавшего этот документ около 1650 года до н. э.
Папирус представляет собой сборник задач с решениями. Всего он содержит более 80 математических примеров по арифметике и геометрии. Например, задача на равное распределение между 10 работниками 9 хлебов решалась так: 7 хлебов делятся на 3 части каждый, и работникам выдается по 2/3 хлеба, при этом в остатке имеем 1/3. Два хлеба делятся на 5 частей каждый, выдается по 1/5 на человека. Оставшуюся треть хлеба делят на 10 частей.
Есть задача и на неравное распределение 10 мер зерна между 10 людьми. В результате образуется арифметическая прогрессия с разностью 1/8 меры.
Задача на геометрическую прогрессию носит шуточный характер: в 7 домах живет по 7 кошек, каждая из которых съела по 7 мышей. Каждая мышь съела 7 колосков, каждый колос приносит 7 мер хлеба. Нужно вычислить общее количество домов, кошек, мышей, колосьев и хлебных мер. Оно составляет 19607.
Геометрические задачи
Немалый интерес представляют математические примеры, демонстрирующие уровень знаний египтян в области геометрии. Это нахождение объема куба, площади трапеции, вычисление наклона пирамиды. Наклон выражался не в градусах, а рассчитывался как отношение половины основания пирамиды к ее высоте. Эта величина, аналогичная современному котангенсу, называлась «секед». Основными единицами длины служили локоть, составлявший 45 см («царский локоть» – 52,5 см) и хет – 100 локтей, основная единица площади – сешат, равный 100 квадратным локтям (около 0,28 Га).
Египтяне успешно справлялись с вычислением площадей треугольников, применяя способ, аналогичный современному. Вот задача из папируса Ринда: чему равна площадь треугольника, имеющего высоту 10 хет (1000 локтей) и основание 4 хета? В качестве решения предлагается десять умножить на половину от четырех. Мы видим, что метод решения абсолютно верный, подается в конкретном численном виде, а не в формализованном – умножить высоту на половину основания.
Весьма интересна задача на вычисление площади круга. Согласно приведенному решению, она равна величине 8/9 диаметра, возведенной в квадрат. Если теперь из полученной площади вычислить число «пи» (как отношение учетверенной площади к квадрату диаметра), то оно составит около 3,16, то есть довольно близко к истинной величине «пи». Таким образом, египетский способ решения площади круга был достаточно точным.
Московский папирус
Еще один важный источник наших знаний об уровне математики у древних египтян – Московский математический папирус (он же папирус Голенищева), хранящийся в Музее изобразительных искусств им. А. С. Пушкина. Это тоже задачник с решениями. Он не так обширен, содержит 25 задач, но имеет более древний возраст – примерно на 200 лет старше папируса Ринда. Большинство примеров в папирусе – геометрические, в том числе задача на вычисление площади корзины (то есть криволинейной поверхности).
В одной из задач приведен способ нахождения объема усеченной пирамиды, совершенно аналогичный современной формуле. Но поскольку все решения в египетских задачниках имеют «рецептурный» характер и приводятся без промежуточных логических этапов, без всякого объяснения, остается неизвестным, каким образом египтяне нашли эту формулу.
Астрономия, математика и календарь
Древнеегипетская математика связана и с календарными вычислениями, основанными на повторяемости некоторых астрономических явлений. Прежде всего, это предсказание ежегодного подъема Нила. Египетские жрецы заметили, что начало разлива реки на широте Мемфиса обычно совпадает с днем, когда на юге перед восходом Солнца становится виден Сириус (большую часть года эта звезда на данной широте не наблюдается).
Первоначально простейший сельскохозяйственный календарь не был привязан к астрономическим событиям и основывался на простом наблюдении сезонных изменений. Затем он получил точную привязку к восходу Сириуса, а вместе с ней появилась возможность уточнения и дальнейшего усложнения. Без математических навыков жрецы не могли бы уточнять календарь (впрочем, окончательно устранить недостатки календаря египтянам так и не удалось).
Не менее важным было умение выбрать благоприятные моменты для проведения тех или иных религиозных празднеств, также приуроченных к различным астрономическим феноменам. Так что развитие математики и астрономии в Древнем Египте, безусловно, связано с ведением календарных расчетов.
Кроме того, математические знания требуются для хронометрии при наблюдении звездного неба. Известно, что такими наблюдениями занималась особая группа жрецов – «распорядители часов».
Неотъемлемая часть ранней истории науки
При рассмотрении особенностей и уровня развития математики в Древнем Египте видна существенная незрелость, так и не преодоленная за три тысячи лет существования древнеегипетской цивилизации. До нас не дошли сколько-нибудь информативные источники эпохи становления математики, и мы не знаем, как оно происходило. Но ясно, что после некоторого развития уровень знаний и навыков застыл в «рецептурной», предметной форме без признаков прогресса на многие сотни лет.
По-видимому, устойчивый и однообразный круг вопросов, решаемых при помощи уже сложившихся методов, не создавал «спроса» на новые идеи в математике, которая и так справлялась с решением задач строительства, сельского хозяйства, налогообложения и распределения, примитивной торговли и обслуживания календаря и ранней астрономии. Кроме того, архаическое мышление не требует формирования строгой логической, доказательной базы – оно следует рецептуре как ритуалу, и это также сказалось на застойном характере древнеегипетской математики.
Вместе с тем необходимо заметить, что научное знание вообще и математика в частности делали еще первые шаги, а они всегда самые трудные. В примерах, которые демонстрируют нам папирусы с задачами, уже видны начальные ступени обобщения знаний – пока без попыток формализации. Можно сказать, что математика Древнего Египта в том виде, как мы ее знаем (из-за недостаточности источниковой базы по позднему периоду древнеегипетской истории) – это еще не наука в современном понимании, но самое начало пути к ней.